Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 lần 3 kỳ 2 năm 2019 - 2020 trường THCS Phú Đô - Hà Nội

Thứ Sáu ngày 19 tháng 06 năm 2020, trường THCS Phú Đô, quận Nam Từ Liêm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần thứ ba giai đoạn học kỳ 2 năm học 2019 – 2020. Đề khảo sát Toán 9 lần 3 kỳ 2 năm 2019 – 2020 trường THCS Phú Đô – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Trích dẫn đề khảo sát Toán 9 lần 3 kỳ 2 năm 2019 – 2020 trường THCS Phú Đô – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người đi từ A đến B với một vận tốc dự định và thời gian dự định. Nếu người đó đi nhanh hơn mỗi giờ 10km thì đến B sớm hơn dự định 36 phút. Nếu người đó đi chậm hơn mỗi giờ 10km thì đến B muộn hơn dự định 54 phút. Hỏi quãng đường AB dài bao nhiêu km? + Cho parabol (P) y = x^2 và đường thẳng (d): y = 2(m – 2)x – 4m + 13. a) Với m = 4, vẽ (P) và (d) trên cùng một mặt phẳng tọa độ. Tìm tọa độ giao điểm? b) Tìm giá trị của m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho biểu thức S = x1^2 + x2^2 + 4x1x2 + 2020 đạt giá trị nhỏ nhất. [ads] + Cho đường tròn (O) và dây BC khác đường kính. Lấy điểm A thuộc cung BC lớn sao cho AB > AC (A khác C). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H, đường thẳng EF cắt đường thẳng BC tại M. a) Chứng minh tứ giác BFEC là tứ giác nội tiếp. b) Chứng minh EB là tia phân giác của góc DEF. c) Gọi I là trung điểm BC. Chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác MED. d) Qua D kẻ đường thẳng song song với EF cắt các đường thẳng AB, AC lần lượt tại P và N. Chứng minh khi A di động trên cung BC lớn (nhưng vẫn thỏa mãn giả thiết ban đầu) thì đường tròn ngoại tiếp tam giác MNP luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 năm 2022 - 2023 trường TH THCS Mỹ Đức - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường TH & THCS Mỹ Đức, huyện Mỹ Đức, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 trường TH & THCS Mỹ Đức – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Năm ngoái, tổng cân nặng của bạn An và Bình là 95kg. Năm nay, cân nặng của bạn An tăng 5%, còn cân nặng của bạn bình tăng 8%, do đó tổng cân nặng của hai bạn đó là 101,25 kg. Tính cân nặng của mỗi bạn năm ngoái. + Vào lúc 9h sáng Thứ hai tuần qua, bạn Danh Nhân nhận thấy bóng của một cây Xoài trong sân trường TH & THCS Mỹ Đức dài 6m và khi đó tia nắng mặt trời tạo với mặt đất một góc 51°. Tính chiều cao của cây Xoài theo đơn vị mét (m) (kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác nhọn ABC, đường tròn tâm O đường kính BC cắt AC, AB lần lượt tại E và F. Gọi H là giao điểm của BE và CF. a) Chứng minh các tam giác BEC, tam giác BFC là các tam giác vuông và AH vuông góc với BC. b) Từ A kẻ tiếp tuyến AM (M nằm trên cung nhỏ CE). Chứng minh rằng AM² = AE.AC. c) Kẻ tiếp tuyến AN của đường tròn (O) (N thuộc cung nhỏ BF). Gọi D là giao điểm của AH và BC. Chứng minh AM2 = AH.AD và ba điểm M, H, N thẳng hàng.
Đề khảo sát lần 1 Toán 9 năm 2022 - 2023 trường PT Thực hành Sư phạm - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng lần 1 môn Toán 9 năm học 2022 – 2023 trường Phổ thông Thực hành Sư phạm, Đại học Vinh, tỉnh Nghệ An.
Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Thái Thịnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Thái Thịnh, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 24 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Thái Thịnh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm một công việc thì sau 7 giờ 12 phút hoàn thành xong công việc. Nếu người thứ nhất làm trong 5 giờ và người thứ hai làm trong 6 giờ thì họ làm được 3/4 công việc. Hỏi mỗi người làm một mình thì bao lâu xong công việc? + Cho hệ phương trình. Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x và y là hai số đối nhau. + Cho đường thẳng d và đường tròn (O;R) không có điểm chung. Kẻ OH vuông góc d tại H. Điểm A thuộc d và không trùng với điểm H. Qua A kẻ hai tiếp tuyến AB, AC tới (O) (B và C là các tiếp điểm). BC cắt OA, OH lần lượt tại M và N. Đoạn thẳng OA cắt (O) tại I. 1) Chứng minh bốn điểm O, B, A, C cùng thuộc một đường tròn. 2) Chứng minh OM.OA = ON.OH. 3) Chứng minh: I là tâm đường tròn nội tiếp ABC. 4) Chứng minh rằng khi điểm A di động trên đường thẳng d thì đường thẳng BC luôn đi qua một điểm cố định.
Đề khảo sát Toán 9 lần 1 năm 2022 - 2023 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 ôn thi vào lớp 10 THPT lần 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2022 – 2023 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Cho hàm số y = (m + 2)x + n (d). a) Tìm m, n để đường thẳng (d) có hệ số góc là -1 và qua điểm A(-2;3) b) Tìm m, n để đường thẳng (d) song song với đường thẳng y = 3x – 1 và cắt đường thẳng y = 2x + 5 tại điểm có tung độ là 3. + Cho nửa đường tròn (O;R) đường kính AB. Từ điểm M tùy ý thuộc nửa đường tròn (O) (M khác A và B) vẽ tiếp tuyến dvới nửa đường tròn (O). Gọi I, K là hình chiếu của A và B trên đường thẳng d. Gọi H là hình chiếu của M trên AB. a) Chứng minh: Bốn điểm B, H, M, K cùng thuộc một đường tròn b) Chứng minh BM là tia phân giác của góc OBK và tam giác IHK vuông c) Xác định vị trí của M trên nửa đường tròn (O) để diện tích tứ giác AIKB lớn nhất. + Cho x, y > 0 và x + y ≤ 4/5. Tìm giá trị nhỏ nhất của biểu thức: M = x + y + 1/x + 1/y.