Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio - Lâm Hữu Minh

Tài liệu gồm 122 trang hướng dẫn sử dụng Casio giải các dạng toán trong đề thi THPT Quốc gia, tài liệu do tác giả Lâm Hữu Minh biên soạn. Kỹ thuật CASIO luyện thi THPT Quốc gia là 1 tập hợp những thao tác sử dụng MTBT CASIO theo cách khác bình thường mà thậm chí những người thi Học sinh giỏi giải toán trên máy tính CASIO cũng chưa chắc đã thực hiện được. Bởi vì Kỹ thuật CASIO ở đây được sáng tạo dưới hình thức luyện thi THPT Quốc gia, mà những bài toán trong đề thi Học sinh giỏi giải toán trên máy tính CASIO thì lại thuộc một dạng khác hẳn. Kỹ thuật CASIO hướng đến mục tiêu: + Thứ nhất: luyện cho các bạn sự dẻo tay khi bấm máy tính trong quá trình giải toán. Sau 1 thời gian luyện tập nó sẽ khiến các bạn nhanh nhạy hơn khi cầm máy trước 1 vấn đề dù là nhỏ, dẫn đến tăng tốc độ “CÔNG PHÁ” trước giới hạn của thời gian. [ads] + Thứ hai: đưa ra cho các bạn những phương pháp bấm máy hiệu quả để tránh những thao tác thuộc loại “trâu bò” mà lâu nay nhiều bạn vẫn đang bấm, xử lí đẹp những số liệu xấu, và tìm ra hướng giải ngắn nhất cho bài toán. Dù đề thi ngày càng hướng đến tư duy, suy luận cao và tìm cách hạn chế việc bấm máy, nhưng một khi đã học Kỹ thuật CASIO rồi thì còn lâu Bộ mới hạn chế được các bạn sử dụng máy tính, miễn là được mang máy vào phòng thi! + Thứ ba: luyện cho các bạn sự linh hoạt khi sử dụng máy tính. Đó là niềm đam mê nghiên cứu khám phá những tính năng mới, lối tư duy bài toán kết hợp hài hòa giữa việc giải tay và giải máy, và óc sáng tạo để tìm ra những phương pháp ngày càng ngắn gọn, nhắm đến tối ưu hóa quá trình giải toán. Và từ đó, các bạn có thể tự nghiên cứu mở rộng Kỹ thuật CASIO sang những môn học tự nhiên khác. + Thứ tư: thành thục Kỹ thuật CASIO kết hợp với vốn kiến thức Toán học của các bạn, sẽ tạo nên 1 tâm lý vững vàng khi bước vào kì thi (tất nhiên là không được phép chủ quan đâu đấy).

Nguồn: toanmath.com

Đọc Sách

Phân tích một số câu khó trong đề thi tốt nghiệp THPT môn Toán đợt 2 năm 2021
Nội dung Phân tích một số câu khó trong đề thi tốt nghiệp THPT môn Toán đợt 2 năm 2021 Bản PDF - Nội dung bài viết Phân tích đề thi tốt nghiệp THPT môn Toán đợt 2 năm 2021 Phân tích đề thi tốt nghiệp THPT môn Toán đợt 2 năm 2021 Tài liệu này được biên soạn bởi Ths Nguyễn Minh Nhiên, Phó Trưởng phòng GDTrH – GDTX sở GD&ĐT Bắc Ninh, nhằm giải và phân tích những câu khó trong đề thi tốt nghiệp THPT môn Toán đợt 2 năm 2021. Buổi thi diễn ra vào ngày 06/08/2021, với 24 mã đề khác nhau. Bài thi môn Toán trong kỳ thi tốt nghiệp THPT đợt 2 năm 2021 được thiết kế dựa trên chương trình lớp 12, với 38 câu ở mức độ nhận biết, thông hiểu, kiểm tra kiến thức cơ bản của lớp 11 và lớp 12. Các câu từ 39 đến 50 đều kiểm tra khả năng vận dụng cao của học sinh, yêu cầu tổng hợp kiến thức trong chương trình THPT. Đề thi đợt 2 có nhiều câu quen thuộc, một số dạng bài đã xuất hiện trong đề thi đợt 1. Mục tiêu của tài liệu này là giúp giáo viên và học sinh có tài liệu ôn tập, nắm vững kiến thức, tiếp cận các bài toán mới, hay và lạ. Bài viết mang đến sự tham khảo cho giáo viên, giúp học sinh chuẩn bị tốt cho kỳ thi trắc nghiệm môn Toán.
Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 2021)
Nội dung Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 2021) Bản PDF - Nội dung bài viết Sản phẩm toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017-2021) Sản phẩm toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017-2021) Tài liệu "Toàn cảnh đề thi tốt nghiệp THPT môn Toán" được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, bao gồm 880 trang tổng hợp và phân loại theo chuyên đề các dạng toán trong các đề thi tốt nghiệp THPT môn Toán từ năm học 2016 – 2017 đến năm học 2020 – 2021. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. Danh sách chuyên đề bao gồm: D09 – 1.9 Chứng minh bất đẳng thức (dùng nhiều phương pháp) – Mức độ 3 D02 – 5.2 Giải bất phương trình bậc hai và bài toán liên quan – Mức độ 4 D01 – 1.1 Quy tắc cộng – Mức độ 1 ... (có nhiều chuyên đề khác) Tài liệu này là công cụ hữu ích giúp học sinh hiểu rõ các dạng toán phổ biến xuất hiện trong đề thi tốt nghiệp THPT môn Toán. Nó giúp họ rèn luyện kỹ năng giải quyết các bài toán đa dạng, từ mức độ dễ đến khó, từ các chuyên đề cơ bản đến nâng cao. Việc ôn tập thông qua tài liệu này giúp học sinh tự tin hơn khi bước vào kỳ thi quan trọng.
Phát triển các bài toán VD VDC trong đề thi TN THPT 2021 môn Toán (đợt 1)
Nội dung Phát triển các bài toán VD VDC trong đề thi TN THPT 2021 môn Toán (đợt 1) Bản PDF - Nội dung bài viết Phát triển bài toán VD VDC trong đề thi TN THPT 2021 môn Toán Phát triển bài toán VD VDC trong đề thi TN THPT 2021 môn Toán Strong Team Toán VD – VDC đã biên soạn tài liệu gồm 43 trang phát triển bài toán mức độ vận dụng – vận dụng cao trong đề thi chính thức tốt nghiệp Trung học Phổ thông năm 2021 môn Toán (đợt 1) – mã đề 101. Tài liệu này bao gồm các câu hỏi từ câu 36 đến câu 50, đề cập đến các bài toán phức tạp và thú vị. Trích dẫn một số bài toán trong tài liệu: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P: x/2 + y/2 + z/15 = 0. Gọi M là điểm di động trên P, N là điểm thuộc tia OM sao cho OM = ON = 10. Khoảng cách nhỏ nhất từ N đến mặt phẳng P bằng bao nhiêu? Cho hai hàm số f(x) = 4x^2 + ax + b và g(x) = cx^3 + dx^2 + 3. Biết rằng đồ thị của hàm số y = f(x) và y = g(x) cắt nhau tại hai điểm có hoành độ lần lượt là -2 và 1. Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng bao nhiêu? Trong tập số phức, cho phương trình m^2z^2 + m^3z - m = 0. Có bao nhiêu giá trị nguyên của m trong đoạn [0, 2021] để phương trình có 2 nghiệm phân biệt z1 và z2 thỏa mãn z1 + z2 = 1? Cho hình trụ đứng có hai đáy là hai đường tròn tâm O và tâm O', bán kính bằng a, chiều cao hình trụ bằng 2a. Mặt phẳng đi qua trung điểm OO' và tạo với OO' một góc 30 độ, cắt đường tròn đáy tâm O theo dây cung AB. Độ dài đoạn AB là bao nhiêu? Tài liệu này không chỉ hữu ích cho các em học sinh tham dự kỳ thi tốt nghiệp THPT môn Toán đợt 2 năm 2021 mà còn giúp các thầy cô giáo tham khảo và sử dụng trong các năm học sau.
Phát triển các câu VD VDC trong đề tham khảo TN THPT 2021 môn Toán
Nội dung Phát triển các câu VD VDC trong đề tham khảo TN THPT 2021 môn Toán Bản PDF - Nội dung bài viết Tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán Tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán Tài liệu này gồm 60 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Giáo Viên Toán Việt Nam. Cùng nhau, họ phân tích, định hướng tìm lời giải và xây dựng các bài toán tương tự các câu vận dụng – vận dụng cao trong đề thi tham khảo tốt nghiệp THPT năm 2021 môn Toán (câu 41 – câu 50). Trích dẫn tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán: + Đây là bài toán tính tích phân của hàm hợp. Để tính được tích phân trên ta phải thực hiện phép đổi biến để đưa về hàm đã cho. Cụ thể các bước thực hiện như sau: Bước 1: Đặt 2sin(1/x) = t. Bước 2: Biểu thị cos(x)dx = dt. Bước 3: Đổi cận và tính tích phân từ a đến b f(t)dt. Đây là dạng toán thuộc mức độ vận dụng, việc nhận ra hướng giải đòi hỏi học sinh phải nắm chắc các khái niệm và tính chất của tích phân cũng như các phương pháp tính tích phân. + Hướng phát triển: Xét các số phức thỏa mãn điều kiện (cho một giả thiết về modun, một giả thiết về số thuần ảo/ số thực) đưa về phương trình hoặc hệ phương trình. Nếu cho giả thiết số thuần ảo thì chỉ cần xác định phần thực và cho bằng 0. Nếu cho giả thiết là số thực thì chỉ cần xác định phần ảo và cho bằng 0. + Bài toán trên là bài toán về tính thể tích khối chóp liên quan góc giữa một đường thẳng và mặt phẳng. Thông thường đề bài hay cho góc giữa một cạnh bên và mặt đáy của hình chóp liên quan đến chân đường cao của hình chóp, tức hình chiếu của đường thẳng lên mặt phẳng tương đối dễ xác định, thì dạng bài này đề lại cho góc giữa một đường thẳng và mặt phẳng mà tương đối khó xác định hình chiếu của đường lên mặt hơn. Khi xác định được góc giữa đường thẳng và mặt phẳng suy ra độ dài đường cao, từ đó tính thể tích khối chóp. Để làm tốt được bài tập dạng này các em cần nắm chắc phương pháp xác định góc giữa đường thẳng và mặt phẳng.