Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Trường Tộ Hà Nội

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Trường Tộ Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 trường THCS Nguyễn Trường Tộ Hà Nội Đề học sinh giỏi Toán lớp 9 trường THCS Nguyễn Trường Tộ Hà Nội Chúng ta sẽ cùng tìm hiểu về đề khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2023 – 2024 của trường THCS Nguyễn Trường Tộ ở Hà Nội. Đề thi diễn ra vào ngày 16 tháng 09 năm 2023 với các câu hỏi hấp dẫn và thú vị như sau: 1. Cho ba số nguyên dương m, n, p thỏa mãn: (m + n!)(n + m!) = 5^p. Hãy chứng minh rằng mn là số chính phương. 2. Trong tam giác không cân ABC nhọn, với các đường cao AD, BE, CF cắt nhau tại trực tâm H. Gọi M, I lần lượt là trung điểm của BC, AH. Chúng ta cần thực hiện các bước sau: Chứng minh rằng IE vuông góc với ME. Chứng minh rằng SA song song với BC. Chứng minh rằng I là trung điểm của PQ, trong đó P, Q lần lượt là giao điểm của SI với BE, CF. 3. Cho 2023 điểm phân biệt được phủ lên bởi một tam giác vuông cân có cạnh huyền bằng 24. Chứng minh rằng luôn tồn tại một hình tròn có đường kính bằng 1, phủ lên ít nhất 7 điểm đã cho. Đây là những câu hỏi đầy thách thức, đòi hỏi sự tư duy logic và kỹ năng giải quyết vấn đề từ các em học sinh. Hy vọng rằng đề thi sẽ giúp các em rèn luyện và phát triển khả năng Toán học của mình một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Ngã Bảy - Hậu Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thành phố Ngã Bảy, tỉnh Hậu Giang.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Sáu ngày 12 tháng 01 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Hải Dương : + Cho a, b là các số tự nhiên thỏa mãn 2a2 + a = 3b2 + b. Chứng minh rằng 2a + 2b + 1 và 3a + 3b + 1 đều là các số chính phương. + Cho tam giác ABC cân tại A, O là trung điểm của BC. Đường tròn tâm O tiếp xúc với hai cạnh AB, AC tại H và K. Gọi P, Q là hai điểm lần lượt thuộc các cạnh AB và AC sao cho POQ = ABC. a) Chứng minh rằng PQ là tiếp tuyến của đường tròn (O). b) HK cắt OQ tại D. Chứng minh rằng PD vuông góc với OQ. + Cho tam giác ABC có ba góc nhọn và có trực tâm H. Gọi D, E, F lần lượt là chân ba đường cao kẻ từ các đỉnh A, B, C của tam giác ABC. Chứng minh rằng?
Đề học sinh giỏi tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Sáu ngày 12 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Hà Tĩnh : + Cho đường thẳng (d): y = (m − 1)x + 3. Tìm tất cả các giá trị của m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A và B sao cho tam giác AOB vuông cân. + Bạn Hà làm một bài thi gồm 20 câu hỏi. Mỗi câu trả lời đúng được 5 điểm, mỗi câu trả lời sai bị trừ 1 điểm, mỗi câu bỏ qua không trả lời được 0 điểm. Tính số câu trả lời đúng, số câu trả lời sai, số câu bỏ qua không trả lời của bạn Hà, biết rằng bạn Hà được 57 điểm. + Cho hình vẽ, biết rằng AE = 2, ED = 3, CB = 6. Trong đó AB và CD cùng vuông góc với AD tại A và tại D. Tìm độ dài đoạn BE.
Đề chọn HSG Toán 9 vòng 3 năm 2023 - 2024 phòng GDĐT Hoàng Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi môn Toán 9 vòng 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An. Trích dẫn Đề chọn HSG Toán 9 vòng 3 năm 2023 – 2024 phòng GD&ĐT Hoàng Mai – Nghệ An : + Cho đường tròn (O;R) và điểm A cố đỉnh với OA = 2R; đường kính BC quay quanh O sao cho tam giác ABC là tam giác nhọn. Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng OA tại điểm thứ hai là I. Các đường thẳng AB, AC cắt (O;R) lần lượt tại điểm thứ hai là D và E. Gọi K là giao điểm của DE với OA. a) Chứng minh AK.AI = AE.AC. b) Tính độ dài đoạn AK theo R. c) Chứng minh tâm đường tròn ngoại tiếp tam giác ADE luôn thuộc một đường thẳng cố định. + Cho 8 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 210. Chứng minh rằng trong đoạn thẳng đó luôn tìm được 3 đoạn thẳng để ghép thành một tam giác.