Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Lê Thánh Tông - Quảng Nam

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT môn Toán năm học 2021 – 2022 lần 1 trường THPT chuyên Lê Thánh Tông, tỉnh Quảng Nam. Trích dẫn đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Lê Thánh Tông – Quảng Nam : + Vì yêu toán nên khi đặt mật khẩu cho tài khoản facebook của mình, bạn Toàn đã dùng dãy các chữ cái “TOANYEUTOAN” rồi thay đổi ngẫu nhiên vị trí các chữ cái này để tạo ra mật khẩu. Tính xác suất để mật khẩu đó là một dãy chữ cái mà các chữ cái nếu xuất hiện 1 lần thì không đứng cạnh nhau, đồng thời các chữ T, N giống nhau thì đứng cạnh nhau. + Cho nửa đường tròn đường kính AB 4cm, điểm M di động trên nửa đường tròn đó. Gọi d là tiếp tuyến với nửa đường tròn tại M, d cắt các tiếp tuyến của nửa đường tròn tại A B lần lượt tại D C. Khi quay tứ giác ABCD quanh trục AB ta được một vật thể tròn xoay có thể tích nhỏ nhất là? + Từ các chữ số 1, 2, 3, 4, 5. Gọi S là tập hợp số tự nhiên có năm chữ số trong đó chữ số 3 có mặt 3 lần, các chữ số còn lại có mặt đúng một lần. Chọn ngẫu nhiên trong tập S một số, tính xác suất để số chọn được chia hết cho 3. + Cho hàm số 2 x y. Chọn khẳng định đúng. y f x logcx logbx logax 1 A. Từ trái qua phải, đồ thị hàm số là đường cong đi lên. B. Đồ thị hàm số đi qua điểm (1,0). C. Đồ thị hàm số nằm bên phải trục tung. D. Đồ thị hàm số có 1 tiệm cận đứng. + Một mặt phẳng đi qua trục của một hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh a. Tính diện tích xung quanh của hình trụ?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 1 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 1 sở Giáo dục và Đào tạo UBND tỉnh Bình Phước. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 1 sở GD&ĐT Bình Phước : + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 1 2 9 và điểm A 2 1 2. Từ A kẻ ba tiếp tuyến bất kì AM AN AP đến S. Gọi T là điểm thay đổi trên mặt phẳng MNP sao cho từ T kẻ được hai tiếp tuyến vuông góc với nhau đến S và cả hai tiếp tuyến này đều nằm trong MNP. Khoảng cách từ T đến giao điểm của đường thẳng 1 2 1 3 x t y t z t với mặt phẳng MNP có giá trị nhỏ nhất là? + Cho hàm số y f x có đạo hàm là 2 2 f x x x x x 2. Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số 1 2 6 2 f x x m có 5 điểm cực trị. Tính tổng tất cả các phần tử của S. + Trên parabol 2 P y x lấy hai điểm A B 1 1 2 4. Gọi M là điểm trên cung AB của P sao cho diện tích của tam giác AMB lớn nhất. Biết chu vi tam giác MAB là a b c2 5 29 khi đó giá trị a b c bằng?
Đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần thứ hai trường THPT Hai Bà Trưng, tỉnh Thừa Thiên Huế (mã đề 132). Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng – TT Huế : + Cho hàm số ƒ(x) = ax4 + bx3 + cx2 + dx + e với a b c d e là các số thực. Đồ thị của hai hàm số y = f'(x) và y= f”(x) cắt nhau tại các điểm trong đó có hai điểm là M N (tham khảo hình vẽ). Biết diện tích miền gạch chéo bằng 8. Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = f'(x) và y = f”(x). + Trong không gian Oxyz cho hai mặt phẳng (P): 3x – 4z + 8 = 0 và mặt phẳng (Q): 3x – 4z – 12 = 0. Gọi (S) là mặt cầu đi qua gốc tọa độ O và tiếp xúc với cả hai mặt phẳng (P) và (Q). Biết rằng khi (S) thay đổi thì tâm của nó luôn nằm trên một đường tròn (C) có tâm H(a;b;c), bán kính r. Tính T. + Trên tập hợp các số phức, xét phương trình z2 – 2z + m²  = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10;10] để phương trình đó có hai nghiệm phân biệt z1 và z2 thỏa mãn.
Đề thi thử TN THPT 2022 môn Toán trường chuyên Phan Bội Châu - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán trường THPT chuyên Phan Bội Châu, thành phố Vinh, tỉnh Nghệ An (mã đề 002). Trích dẫn đề thi thử TN THPT 2022 môn Toán trường chuyên Phan Bội Châu – Nghệ An : + Cho hàm số y = f(x) là hàm đa thức bậc bốn, có đồ thị nhận đường thẳng x = -3,5 làm trục đối xứng. Biết diện tích hình phẳng của phần giới hạn bởi đồ thị hàm số y = f(x), y = f'(x) và hai đường thẳng x = -5, x = -2 có giá trị là 127/50 (hình vẽ bên). Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và trục hoành bằng? + Từ một tấm tôn hình tam giác đều cạnh bằng 6m, ông A cắt thành một tấm tôn hình chữ nhật và cuộn lại được một cái thùng hình trụ (như hình vẽ). Ông A làm được cái thùng có thể tích tối đa là V (vật liệu làm nắp thùng coi không liên quan). Giá trị của V thỏa mãn? + Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A1B1C1 có A1(3;-1;1), hai đỉnh B và C thuộc trục Oz và AA1 = 1 (C không trùng O). Biết u = (a;b;1) là một véctơ chỉ phương của đường thẳng A1C. Giá trị của a2 + b2 bằng?
Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Trần Quốc Tuấn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT môn Toán lần 2 năm học 2021 – 2022 trường THPT Trần Quốc Tuấn, tỉnh Quảng Ngãi; đề thi có đáp án mã đề 001 002 003 004 005 006 007 008 009 010 011 012. Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Trần Quốc Tuấn – Quảng Ngãi : + Trong không gian với hệ tọa độ Oxyz cho các mặt phẳng P x y z  2 2 1 0 Q x y z 2 2 1 0. Gọi S là mặt cầu có tâm thuộc trục hoành, đồng thời S cắt mặt phẳng P theo giao tuyến là một đường tròn có bán kính bằng 3 và S cắt mặt phẳng Q theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu S thỏa yêu cầu. + Một hộp đựng 15 viên bi khác nhau trong đó có 8 viên bi xanh, 5 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp trên. Tính xác suất để trong 6 viên bi lấy ra có ít nhất 1 viên màu vàng và không quá 4 viên bi đỏ. + Trong không gian với hệ tọa độ Oxyz cho mặt phẳng đi qua điểm M 1 2 3 và cắt các tia Ox Oy Oz lần lượt tại A B C sao cho độ dài OA OB OC theo thứ tự tạo thành một cấp số nhân có công bội bằng 3. Tính khoảng cách từ gốc tọa độ O tới mặt phẳng.