Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán về quỹ tích - tập hợp điểm

Tài liệu gồm 59 trang, tuyển chọn bài toán về quỹ tích – tập hợp điểm hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ 1. Định nghĩa tập hợp điểm (quỹ tích). Một hình H được gọi là tập hợp điểm của những điểm M thoả mãn tính chất T khi nó chứa và chỉ chứa tính chất T. 2. Phương pháp chủ yếu giải bài toán tập hợp điểm. Để tìm tập hợp các điểm M thoả mãn tính chất T ta làm như sau: Bước 1: Tìm cách giải: – Xác định các yếu tố cố định và không đổi. – Xác định các điều kiện của điểm M. – Dự đoán tập hợp điểm. Bước 2: Trình bày lời giải: – Phần thuận: Chứng minh điểm M có tính chất T thuộc hình H. – Giới hạn: Căn cứ vào các vị trí đặc biệt của điểm M, chứng tỏ điểm M chỉ thuộc vào hình H, hoặc một phần B của hình H (nếu được). – Phần đảo: Chứng minh mọi điểm thuộc hình H (quỹ tích đã được giới hạn) có tính chất T. Thường làm như sau: + Lấy điểm M thuộc hình H (quỹ tích đã được giới hạn), giả sử tính chất T gồm n điều kiện. + Dựng một hình để chứng minh M có tính chất T sao cho M thoả mãn n − 1 điều kiện trong tính chất T và chứng minh M có thoả mãn điều kiện còn lại. – Kết luận:Tập hợp điểm M là hình H. Nêu rõ hình dạng và cách xác định hình H. Chú ý: – Việc tìm ra mối liên hệ giữa các yếu tố cố định, không đổi với yếu tố chuyển động là khâu chủ yếu giúp ta giải quyết bài toán tập hợp điểm. – Nếu bài toán chỉ hỏi “Điểm M chuyển động trên đường nào?” thì ta chỉ trình bày phần thuận, phàn giới hạn và phàn kết luận mà không cần không chứng minh phần đảo. – Giải bài toán tập hợp điểm thường là tìm cách đưa về tập hợp điểm cơ bản đã học. – Để khỏi vẽ hình lại khi chứng minh phần đảo tên các điểm trong phần đảo nên giữ nguyên như phần thuận. 3. Một số tập hợp điểm cơ bản. a) Tập hợp điểm là đường trung trực hoặc một phần đường trung trực. Định lí: Tập hợp các điểm M cách đều hai điểm phân biệt A, B cố định là đường trung trực d của đoạn thẳng AB. b) Tập hợp điểm là tia phân giác. Định lí: Tập hợp các điểm nằm trong góc xOy (khác góc bẹt) và cách đều hai cạnhcủa góc là tia phân giác của góc đó. Hệ quả: Tập hợp các điểm M cách đều hai đường thẳngcắt nhau xOx’ và yOy’ là bốn tia phân giác của bốn góc tạo thành, bốn tia này tạo thành hai đường thẳng vuông góc với nhau tại giao điểm O của hai đường thẳng đó. c) Tập hợp điểm là đường thẳng song song. Định lý 1: Tập hợp các điểm M cách đường thẳng h cho trước một khoảng bằng a không đổi là hai đường thẳng song song với đường thắng đã cho và cách đường thẳng đó bằng a. Định lí 2: Tập hợp các điểm cách đều hai đường thẳng song song cho trước là một đường thẳng song song và nằm cách đều hai đường thẳng đã cho. d) Tập hợp điểm là đường tròn, một phần của đường tròn, cung chứa góc. + Tập hợp các điểm M cách điểm O cho trước một khoảng không đổi r là đường tròn tâm O bán kính r. + Tập hợp các điểm nhìn đoạn thẳng cố định AB dưới góc 900 là đường tròn đường kính AB. + Tập hợp các điểm M tạo thành với hai mút của đoạn thẳng AB cho trước một góc AMB có số đo không đổi là α là hai cung tròn đối xứng nhau qua AB. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hệ phương trình ôn thi vào lớp 10
Tài liệu gồm 108 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hệ phương trình, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. HỆ ĐỐI XỨNG LOẠI 1 Một hệ phương trình ẩn x, y được gọi là hệ phương trình đối xứng loại 1 nếu mỗi phương trình ta đổi vai trò của x, y cho nhau thì phương trình đó không đổi. Tính chất: Nếu x y 0 0 là một nghiệm thì hệ y x 0 0 cũng là nghiệm. Cách giải: Đặt S xy P xy điều kiện 2 S P 4 quy hệ phương trình về 2 ẩn S P. HỆ ĐỐI XỨNG LOẠI 2 Một hệ phương trình 2 ẩn x y được gọi là đối xứng loại 2 nếu trong hệ phương trình ta đổi vai trò x y cho nhau thì phương trình trở thành phương trình kia. Tính chất: Nếu x y 0 0 là 1 nghiệm của hệ thì y x 0 0 cũng là nghiệm. Phương pháp giải: Trừ vế với vế hai phương trình của hệ ta được một phương trình có dạng 0 x y x y f xy f xy. HỆ CÓ YẾU TỐ ĐẲNG CẤP ĐẲNG CẤP Là những hệ chứa các phương trình đẳng cấp. Hoặc các phương trình của hệ khi nhân hoặc chia cho nhau thì tạo ra phương trình đẳng cấp. Một số hệ phương trình tính đẳng cấp được giấu trong các biểu thức chứa căn đòi hỏi người giải cần tinh ý để phát hiện. Phương pháp chung để giải hệ dạng này là: Từ các phương trình của hệ ta nhân hoặc chia cho nhau để tạo ra phương trình đẳng cấp bậc n. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG Biến đổi tương đương là phương pháp giải hệ dựa trên những kỹ thuật cơ bản như: Thế / biến đổi các phương trình về dạng tích,cộng trừ các phương trình trong hệ để tạo ra phương trình hệ quả có dạng đặc biệt. PHƯƠNG PHÁP ĐẶT ẨN PHỤ Đặt ẩn phụ là việc chọn các biểu thức f xy gxy trong hệ phương trình để đặt thành các ẩn phụ mới làm đơn giản cấu trúc của phương trình, hệ phương trình. Qua đó tạo thành các hệ phương trình mới đơn giản hơn, hay quy về các dạng hệ quen thuộc như đối xứng, đẳng cấp. Để tạo ra ẩn phụ người giải cần xử lý linh hoạt các phương trình trong hệ thông qua các kỹ thuật: Nhóm nhân tử chung, chia các phương trình theo những số hạng có sẵn, nhóm dựa vào các hằng đẳng thức, đối biến theo đặc thù phương trình. PHƯƠNG PHÁP ĐƯA VỀ HẰNG ĐẲNG THỨC Điểm mấu chốt khi giải hệ bằng phương pháp biến đổi theo các hằng đẳng thức. KHI TRONG HỆ CÓ CHỨA PHƯƠNG TRÌNH BẬC 2 THEO ẨN x HOẶC y Khi trong hệ phương trình có chứa phương trình bậc hai theo ẩn x hoặc y ta có thể nghỉ đến các hướng xử lý như sau: Nếu ∆ chẵn, ta giải x theo y rồi thế vào phương trình còn lại của hệ để giải tiếp. Nếu ∆ không chẵn ta thường xử lý theo cách: Cộng hoặc trừ các phương trình của hệ để tạo được phương trình bậc hai có ∆ chẵn hoặc tạo thành các hằng đẳng thức. Dùng điều kiện ∆ ≥ 0 để tìm miền giá trị của biến x y. Sau đó đánh giá phương trình còn lại trên miền giá trị x y vừa tìm được. PHƯƠNG PHÁP ĐÁNH GIÁ Để giải được hệ phương trình bằng phương pháp đánh giá ta cần nắm chắc các bất đẳng thức cơ bản như: Cauchy, Bunhicopxki, các phép biến đổi trung gian giữa các bất đẳng thức, qua đó để đánh giá tìm ra quan hệ x y. Ngoài ra ta cũng có thể dùng hàm số để tìm GTLN – GTNN từ đó có hướng đánh giá, so sánh phù hợp.
Chuyên đề phương trình vô tỷ ôn thi vào lớp 10
Tài liệu gồm 100 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề phương trình vô tỷ, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG TRÌNH VÔ TỶ CƠ BẢN MỘT SỐ DẠNG PHƯƠNG TRÌNH VÔ TỶ THƯỜNG GẶP + Giải phương trình vô tỷ bằng phương pháp sử dụng biểu thức liên hợp. + Đặt ẩn phụ dựa vào tính đẳng cấp của phương trình. + Giải phương trình vô tỷ bằng phương pháp đặt ẩn phụ không hoàn toàn. + Sử dụng hằng đẳng thức để giải phương trình. + Phương pháp đánh giá. + Đặt ẩn phụ hoàn toàn để quy về phương trình một ẩn. + Đặt ẩn phụ hoàn để quy về hệ đối xứng loại 2. + Một số cách đặt ẩn phụ khác. MỘT SỐ BÀI TẬP RÈN LUYỆN LỜI GIẢI BÀI TẬP RÈN LUYỆN
Chuyên đề phương trình đại số ôn thi vào lớp 10
Tài liệu gồm 24 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề phương trình đại số, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP Để giải một phương trình bậc lớn hơn 3. Ta thường biến đổi phương trình đó về một trong các dạng đặc biệt đó là: 1. Phương pháp đưa về dạng tích. Cách 1: Sử dụng các hằng đẳng thức. Cách 2: Nhẩm nghiệm rồi chia đa thức: Nếu x a là một nghiệm của phương trình f x 0 thì ta luôn có sự phân tích: f x x agx. Cách 3: Sử dụng phương pháp hệ số bất định. Ta thường áp dụng cho phương trình bậc bốn. 2. Phương pháp đặt ẩn phụ. Là phương pháp khá hữu hiệu đối với các bài toán đại số, trong giải phương trình bậc cao cũng vậy, người ta thường đặt ẩn phụ để chuyển phương trình bậc cao về phương trình bậc thấp hơn. Một số dạng sau đây ta thường dùng đặt ẩn phụ: + Dạng 1: Phương trình trùng phương. + Dạng 2: Phương trình đối xứng (hay phương trình hồi quy). + Dạng 3: Phương trình: xa xb xc xd e trong đó a + b = c + d. + Dạng 4: Phương trình 2 x a x b x c x d ex trong đó ab = cd. + Dạng 5: Phương trình 4 4 xa xb c. BÀI TẬP RÈN LUYỆN
Chuyên đề giải toán bằng cách lập phương trình - hệ phương trình ôn thi vào lớp 10
Tài liệu gồm 20 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề giải toán bằng cách lập phương trình – hệ phương trình, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP Để giải bài toán bằng cách lập phương trình, hệ phương trình ta thường thực hiện theo các bước sau: Bước 1: Chọn ẩn số (nêu đơn vị của ẩn và đặt điều kiện nếu cần). Bước 2: Tính các đại lượng trong bài toán theo giả thiết và ẩn số, từ đó lập phương trình hoặc hệ phương trình. Bước 3: Giải phương trình hoặc hệ phương trình vừa lập. Bước 4: Đối chiếu với điều kiện và trả lời. CÁC BÀI TOÁN CHUYỂN ĐỘNG Kiến thức cần nhớ: + Quãng đường = Vận tốc . Thời gian. + Vận tốc tỷ lệ nghịch với thời gian và tỷ lệ thuận với quãng đường đi được. + Nếu hai xe đi ngược chiều nhau khi gặp nhau lần đầu: Thời gian hai xe đi được là như nhau. Tổng quãng đường 2 xe đi được bằng đúng quãng đường cần đi của 2 xe. + Nếu hai phương tiện chuyển động cùng chiều từ hai địa điểm khác nhau là A và B, xe từ A chuyển động nhanh hơn xe từ B thì khi xe từ A đuổi kịp xe từ B ta luôn có hiệu quãng đường đi được của xe từ A với quãng đường đi được của xe từ B bằng quãng đường AB. + Đối với (Ca nô, tàu xuồng) chuyển động trên dòng nước: Ta cần chú ý: Khi đi xuôi dòng: Vận tốc ca nô = Vận tốc riêng + Vận tốc dòng nước. Khi đi ngược dòng: Vận tốc ca nô = Vận tốc riêng – Vận tốc dòng nước. Vận tốc của dòng nước là vận tốc của một vật trôi tự nhiên theo dòng nước (Vận tốc riêng của vật đó bằng 0). BÀI TOÁN LIÊN QUAN ĐẾN NĂNG SUẤT LAO ĐỘNG, CÔNG VIỆC. Ta cần chú ý: Khi giải các bài toán liên quan đến năng suất thì liên hệ giữa ba đại lượng là: Khối lượng công việc = năng suất lao động × thời gian. BÀI TẬP RÈN LUYỆN