Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm tổ hợp và xác suất có lời giải chi tiết - Nguyễn Phú Khánh, Huỳnh Đức Khánh

Tài liệu gồm 55 trang tuyển tập các bài toán có lời giải chi tiết trong chủ đề tổ hợp và xác suất (Chương 2, Đại số và Giải tích 11) Bài 01. QUY TẮC ĐẾM 1. Quy tắc cộng : Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kỳ cách nào của hành động thứ nhất thì công việc đó có m +n cách thực hiện. 2. Quy tắc nhân : Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m×n cách hoàn thành công việc. + Vấn đề 1. QUY TẮC CỘNG + Vấn đề 2. QUY TẮC CỘNG Bài 02. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP 1. Hoán vị : Cho tập A gồm n phần tử (n ≥ 1). Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó. 2. Chỉnh hợp : Cho tập hợp A gồm n phần tử (n ≥ 1). Kết quả của việc lấy k (1 ≤ k ≤ n) phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho. 3. Tổ hợp : Giả sử tập A có n phần tử (n ≥ 1). Mỗi tập con gồm k (1 ≤ k ≤ n) phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho. [ads] + Vấn đề 1. HOÁN VỊ + Vấn đề 2. CHỈNH HỢP + Vấn đề 3. TỔ HỢP + Vấn đề 4. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH Bài 03. NHỊ THỨC NIU-TƠN Bài 04. BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ 1. Phép thử và không gian mẫu : Phép thử ngẫu nhiên (gọi tắt là phép thử) là một thí nghiệm hay một hành động mà: • Kết quả của nó không đoán trước được. • Có thể xác định được tập hợp tất cả các kết quả có thể xảy ra của phép thử đó. Tập hợp mọi kết quả của một phép thử T được gọi là không gian mẫu của T và được kí hiệu là Ω. Số phần tử của không gian mẫu được kí hiệu là n(Ω) hay Ω. 2. Biến cố : Biến cố A liên quan đến phép thử T là biến cố mà việc xảy ra hay không xảy ra của A tùy thuộc vào kết quả của T. Mỗi kết quả của phép thử T làm cho A xảy ra được gọi là một kết quả thuận lợi cho A. Tập hợp các kết quả thuận lợi cho A được kí hiệu là ΩA 3. Xác suất : Giả sử phép thử T có không gian mẫu Ω là một tập hữu hạn và các kết quả của T là đồng khả năng. Nếu A là một biến cố liên quan với phép thử T và ΩA là một tập hợp các kết quả thuận lợi cho A thì xác suất của A là một số, kí hiệu là P(A), được xác định bởi công thức: P(A) = ΩA/Ω

Nguồn: toanmath.com

Đọc Sách

Hệ thống bài tập trắc nghiệm hàm số bậc hai cơ bản - vận dụng - vận dụng cao
Tài liệu gồm 39 trang, được biên soạn bởi thầy giáo Đặng Công Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm hàm số bậc hai mức độ cơ bản – vận dụng – vận dụng cao; giúp học sinh lớp 10 rèn luyện khi học chương trình môn Toán 10 chủ đề: Hàm Số, Đồ Thị Và Ứng Dụng. + Cơ bản hàm số bậc hai (phần 1 – phần 6). + Vận dụng hàm số bậc hai (phần 1 – phần 6). + Vận dụng cao hàm số bậc hai (phần 1 – phần 6).
Hệ thống bài tập trắc nghiệm dấu tam thức bậc hai, BPT bậc hai một ẩn cơ bản - VD - VDC
Tài liệu gồm 38 trang, được biên soạn bởi thầy giáo Đặng Công Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm dấu tam thức bậc hai, bất phương trình bậc hai một ẩn mức độ cơ bản – vận dụng – vận dụng cao; giúp học sinh lớp 10 rèn luyện khi học chương trình môn Toán 10 chủ đề: Hàm Số, Đồ Thị Và Ứng Dụng. + Cơ bản dấu tam thức bậc hai, bất phương trình bậc hai một ẩn (phần 1 – phần 6). + Vận dụng dấu tam thức bậc hai, bất phương trình bậc hai một ẩn (phần 1 – phần 6). + Vận dụng cao dấu tam thức bậc hai, bất phương trình bậc hai một ẩn (phần 1 – phần 6).
Hệ thống bài tập trắc nghiệm đại cương hàm số, đồ thị Toán 10 cơ bản - VD - VDC
Tài liệu gồm 74 trang, được biên soạn bởi thầy giáo Đặng Công Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm đại cương hàm số, đồ thị mức độ cơ bản, vận dụng và vận dụng cao; giúp học sinh lớp 10 rèn luyện khi học chương trình Toán 10 chủ đề Hàm Số – Đồ Thị Và Ứng Dụng. + Cơ bản đại cương hàm số (phần 1 – phần 6). + Vận dụng đại cương hàm số (phần 1 – phần 6). + Vận dụng cao đại cương hàm số (phần 1 – phần 6). + Bài toán thực tiễn hàm số (phần 1 – phần 6). + Cơ bản tổng hợp hàm số (phần 1 – phần 6). + Vận dụng cao tổng hợp hàm số (phần 1 – phần 6).
Bài tập hàm số và đồ thị Toán 10 Cánh Diều
Tài liệu gồm 352 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển tập các dạng bài tập tự luận và trắc nghiệm chuyên đề hàm số và đồ thị trong chương trình Toán 10 Cánh Diều, có đáp án và lời giải chi tiết. BÀI 1 . HÀM SỐ VÀ ĐỒ THỊ. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Tập xác định của hàm số. + Dạng 2. Sự biến thiên của hàm số. + Dạng 3. Tập giá trị, giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Dạng 4. Một số bài toán liên quan đến đồ thị của hàm số. + Dạng 5. Xác định biểu thức của hàm số. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Tập xác định của hàm số. + Dạng 2. Sự biến thiên của hàm số. + Dạng 3. Tập giá trị, giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Dạng 4. Một số bài toán liên quan đến đồ thị của hàm số. + Dạng 5. Xác định biểu thức của hàm số. BÀI 2 . HÀM SỐ BẬC HAI. ĐỒ THỊ HÀM SỐ BẬC HAI VÀ ỨNG DỤNG. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Khảo sát sự biến thiên và vẽ đồ thị. + Dạng 2. Xác định hàm số bậc hai thỏa mãn điều kiện cho trước. + Dạng 3. Sự tương giao giữa parabol với đồ thị các hàm số khác. + Dạng 4. Một số câu hỏi thực tế liên quan đến hàm số bậc hai. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Khảo sát sự biến thiên và vẽ đồ thị. + Dạng 2. Xác định hàm số bậc hai thỏa mãn điều kiện cho trước. + Dạng 3. Sự tương giao giữa parabol với đồ thị các hàm số khác. + Dạng 4. Một số câu hỏi thực tế liên quan đến hàm số bậc hai. BÀI 3 . DẤU CỦA TAM THỨC BẬC HAI. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng. Dấu của tam thức bậc hai. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng. Dấu của tam thức bậc hai. BÀI 4 . BẤT PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Bất phương trình bậc hai. + Dạng 2. Bài toán tham số liên quan đến tam thức bậc hai. + Dạng 3. Ứng dụng của bất phương trình bậc hai một ẩn. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Bất phương trình bậc hai. + Dạng 2. Bài toán tham số liên quan đến tam thức bậc hai. + Dạng 3. Ứng dụng của bất phương trình bậc hai một ẩn. BÀI 5 . HAI DẠNG PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. PHẦN C. BÀI TẬP TRẮC NGHIỆM.