Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề tập hợp các số nguyên

Tài liệu gồm 12 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề tập hợp các số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÝ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Điền kí hiệu thích hợp vào chỗ trống. – Dạng điền kí hiệu. – Tập hợp số tự nhiên. – Tập hợp số nguyên gồm các số nguyên âm, số 0 và số nguyên dương. – A B nếu mọi phần tử của A đều thuộc B. – Dạng điền Đ (đúng) hoặc chữ S (sai); đánh dấu “x” vào ô đúng hoặc sai. Dạng 2 . Biểu diễn số nguyên trên trục số. Trục số là hình biểu diễn gồm một đường thẳng nằm ngang hoặc thẳng đứng, một đầu gắn với mũi tên (biểu thị chiều dương) được chia thành các khoảng bằng nhau (được gọi là đơn vị) và ghi kèm các số tương ứng. Điểm 0 (biểu diễn số 0) được gọi là điểm gốc của trục số (thường đặt tên là O). Điểm biểu diễn số a trên trục số gọi là điểm a. Với trục số nằm ngang: Chiều từ trái sang phải là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Với trục số thẳng đứng: Chiều từ dưới lên trên là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Dạng 3 . So sánh hai hay nhiều số nguyên. Cách 1 : Biểu diễn các số nguyên cần so sánh trên trục số. Giá trị các số nguyên tăng dần từ trái sang phải (điểm a nằm bên trái điểm b thì số nguyên a bé hơn số nguyên b). Cách 2 : Căn cứ vào các nhận xét sau: Số nguyên dương lớn hơn 0. Số nguyên âm nhỏ hơn 0. Số nguyên dương lớn hơn số nguyên âm. Trong hai số nguyên dương, số nào có giá trị tuyệt đối lớn hơn thì số ấy lớn hơn. Trong hai số nguyên âm, số nào có giá trị tuyệt đối nhỏ hơn thì số ấy lớn hơn. Kiến thức về giá trị tuyệt đối: – Giá trị tuyệt đối của một số tự nhiên là chính nó. – Giá trị tuyệt đối của một số nguyên âm là số đối của nó. – Giá trị tuyệt đối của một số nguyên là một số tự nhiên. – Hai số nguyên đối nhau có cùng một giá trị tuyệt đối. Dạng 4 . Viết tập hợp số. Tên tập hợp được viết bằng chữ cái in hoa như: A, B, C …. Hai cách viết tập hợp số: Cách 1: Liệt kê các phần tử. Cách 2: Chỉ ra các tính chất đặc trưng. Chú ý: + Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu “;” (nếu có phần tử số) hoặc dấu “,” nếu không có phần tử số. + Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý. Dạng 5 . Sử dụng số nguyên âm trong thực tế. Số dương và số âm được dùng để biểu thị các đại lượng đối lập nhau hoặc có hướng ngược nhau. Số âm thường dùng để chỉ: – Nhiệt độ dưới 0C. – Độ cao dưới mực nước biển. – Số tiền còn nợ. – Số tiền lỗ. – Độ cận thị. – Thời gian trước Công Nguyên.

Nguồn: toanmath.com

Đọc Sách

Tài liệu dạy thêm - học thêm chuyên đề lũy thừa với số mũ tự nhiên
Tài liệu gồm 29 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề lũy thừa với số mũ tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . THỰC HIỆN TÍNH, VIẾT DƯỚI DẠNG LŨY THỪA. Sử dụng công thức. Dạng 2 . SO SÁNH CÁC LŨY THỪA. Để so sánh hai lũy thừa ta thường biến đổi về hai lũy thừa có cùng cơ số hoặc có cùng số mũ (có thể sử dụng các lũy thừa trung gian để so sánh). Với a b m n N ta có: n n a b a b n N. Với A B là các biểu thức ta có 0 n n A B A B. Dạng 3 . TÌM SỐ CHƯA BIẾT TRONG LŨY THỪA. Khi giải bài toán tìm x có luỹ thừa phải: Phương pháp 1: Biến đổi về các luỹ thừa cùng cơ số. Phương pháp 2: Biến đổi về các luỹ thừa cùng số mũ. Phương pháp 3: Biến đổi về dạng tích các lũy thừa. Dạng 4 . MỘT SỐ BÀI TẬP NÂNG CAO VỀ LŨY THỪA. Phương pháp 1: Để so sánh hai luỹ thừa ta thường đưa về so sánh hai luỹ thừa cùng cơ số hoặc cùng số mũ. – Nếu hai luỹ thừa cùng cơ số (lớn hơn 1) thì luỹ thừa nào có số mũ lớn hơn sẽ lớn hơn. – Nếu hai luỹ thừa cùng số mũ (lớn hơn 0) thì lũy thừa nào có cơ số lớn hơn sẽ lớn hơn. Phương pháp 2: Dùng tính chất bắc cầu, tính chất đơn điệu của phép nhân. Một số dạng toán thường gặp: + Dạng 1: So sánh hai số lũy thừa. + Dạng 2: So sánh biểu thức lũy thừa với một số (so sánh hai biểu thức lũy thừa). + Dạng 3: Từ việc so sánh lũy thừa, tìm cơ số (số mũ) chưa biết. + Dạng 4: Sử dụng lũy thừa chứng minh chia hết.
Tài liệu dạy thêm - học thêm chuyên đề các phép toán cộng, trừ, nhân, chia số tự nhiên
Tài liệu gồm 17 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề các phép toán cộng, trừ, nhân, chia số tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. 1. PHÉP CỘNG HAI SỐ TỰ NHIÊN. Dạng 1 . Tính tổng một cách hợp lý. Vận dụng các tính chất giao hoán, kết hợp của phép cộng để tạo thành tổng tròn chục, tròn trăm. Dạng 2 . Tìm x. Coi trong ngoặc là một số hạng, số bị trừ hay số trừ cần tìm, khi đó sử dụng quan hệ phép cộng, phép trừ để đưa về dạng quen thuộc. Sau đó vận dụng quy tắc: * Muốn tìm số hạng chưa biết ta lấy tổng trừ đi số hạng đã biết. * Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ hay Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu. * Muốn tìm thừa số chưa biết ta lây tích chia cho thừa số đã biết. Dạng 3 . Bài toán có lời giải. – Bước 1: Đọc kỹ đề toán và tìm hiểu xem ta đã biết được những gì. – Bước 2: Xác định xem bài toán yêu cầu gì. – Bước 3: Tìm cách giải thông qua cái đã biết và cái cần tìm. 2. PHÉP TRỪ HAI SỐ TỰ NHIÊN. Dạng 1 . Thực hiện phép tính. Thực hiện tất cả các phép cộng và trừ theo thứ tự từ trái qua phải. Tính chất phân phối giữa phép nhân đối với phép trừ. Hiệu của hai số không đổi nếu ta thêm vào một số bị trừ và số trừ cùng một số đơn vị. Dạng 2 . Tìm x. Để tìm số chưa biết trong một phép tính, ta cần nắm vững quan hệ giữa các số trong phép tính: Tìm số hạng; Lấy tổng trừ số hạng đã biết. Tìm số bị trừ: Lấy hiệu cộng số trừ. Tìm số trừ: Lấy số bị trừ trừ đi hiệu. Coi trong ngoặc là một số hạng, số bị trừ hay số trừ cần tìm,khi đó sử dụng quan hệ phép cộng, phép trừ để đưa về dạng quen thuộc. Dạng 3 . Bài toán thực tế. Tóm tắt bài toán, xác định đề bài cho yếu tố nào, tính những yếu tố nào? Mối quan hệ giữa các yếu tố với nhau. Dạng 4 . Tính tổng theo quy luật. Để đếm được số hạng 1 dãy số mà 2 số hạng liên tiếp đều nhau 1 số đơn vị ta dùng công thức. Để tính tổng các số hạng của một dãy mà hai số hạng liên tiếp cách đều nhau 1 số đơn vị ta dùng công thức. 3. PHÉP NHÂN HAI SỐ TỰ NHIÊN. Dạng 1 . Tính một cách hợp lý. – Vận dụng các tính chất giao hoán, kết hợp của phép nhân để tạo thành tích tròn chục, tròn trăm. – Vận dụng tính chất phân phối của phép nhân đối với phép cộng để tính tổng một cách hợp lý. Dạng 2 . Tính nhẩm. – Tính nhẩm bằng cách áp dụng tính chất a b c ab ac. – Tính nhẩm bằng cách chia cả hai thừa số với cùng một số thích hợp. – Tính nhẩm bằng cách nhân vào số bị chia và số chia với cùng một số thích hợp. Dạng 3 . Tìm x biết. Vận dụng quy tắc: * Muốn tìm thừa số chưa biết ta lấy tích chia thừa só đã biết. * Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ. * Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu. Dạng 4 . Bài toán có lời giải. – Bước 1: Đọc kỹ đề toán và tìm hiểu xem ta đã biết được những gì. – Bước 2: Xác định xem bài toán yêu cầu gì. – Bước 3: Tìm cách giải thông qua cái đã biết và cái cần tìm. 4. PHÉP CHIA HAI SỐ TỰ NHIÊN. Dạng 1 . Thực hiện phép tính. Thực hiện phép tính theo quy tắc nhân chia trước, cộng trừ sau. Đặt phép chia và thử lại kết quả bằng phép nhân. Tích của hai số không đổi nếu ta nhân thừa số này và chia thừa số kia cho cùng một số. Thương của hai số không đổi nếu ta nhân cả số bị chia và số chia cho cùng một số a b c a c b c (trường hợp chia hết). Dạng 2 . Tìm x. Tìm thừa số lấy tích chia thừa số đã biết. Tìm số chia lấy số bị chia chia cho thương. Tìm số bị chia lấy thương nhân số chia. Nếu a b 0 thì a 0 hoặc b 0. Dạng 3 . Bài toán thực tế. Đọc kỹ đề bài, xác định đề bài cho những gì và yêu cầu gì? Áp dụng những kiến thức đã học để giải bài toán. Dạng 4 . Trắc nghiệm.
Tài liệu dạy thêm - học thêm chuyên đề thứ tự trong tập hợp các số tự nhiên
Tài liệu gồm 11 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề thứ tự trong tập hợp các số tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. A. Bài tập trắc nghiệm. B. Bài tập tự luận Dạng 1 : Tìm số tự nhiên liền trước, liền sau. Tìm số tự nhiên thỏa mãn điều kiện cho trước. Trên trục số nằm ngang, chiều mũi tên đi từ trái sang phải, điểm bên trái biểu diễn số nhỏ, điểm bên phải biểu diễn số lớn. Vì hai số tự nhiên liên tiếp hơn kém nhau 1 đơn vị, để tìm số tự nhiên liền sau của số tự nhiên a ta tính a 1; tìm số tự nhiên liền trước của số tự nhiên a a 0 ta tính a 1. Số 0 không có số tự nhiên liền trước. Ba số tự nhiên liên tiếp tăng dần có dạng: a a 1 a 2 hoặc a 1 a a 1. Dạng 2 : Viết tập hợp các số tự nhiên; biểu diễn số tự nhiên trên tia số. + Viết tập hợp các số tự nhiên không vượt quá yêu cầu của đề bài và biểu diễn tập hợp trên tia số. + Hai cách biểu diễn tập hợp là liệt kê phần tử và chỉ ra tính chất đặc trưng của tập hợp. + Số các số tự nhiên liên tiếp từ a đến b là b a 1. + Số các số lẻ (chẵn) tự nhiên liên tiếp từ a đến b là 2 1 b a. Dạng 3 : So sánh hai số tự nhiên. + Trong hai số tự nhiên khác nhau, luôn có một số nhỏ hơn số kia. Nếu số a nhỏ hơn số b thì trên tia số nằm ngang điểm a nằm bên trái điểm b. Ta viết a b hoặc b a. Ta còn nói điểm a nằm trước điểm b hoặc điểm b nằm sau điểm a. Trên tia số: Số ở gần 0 hơn là số bé hơn (chẳng hạn: 2 5 …) số ở xa gốc 0 hơn là số lớn hơn (chẳng hạn 12 11). + Sử dụng tính chất bắc cầu: a b và b c thì a c. + Trong hai số tự nhiên: Số nào có nhiều chữ số hơn thì số đó lớn hơn. Chẳng hạn: 100 99. Số nào có ít chữ số hơn thì bé hơn. Chẳng hạn: 99 100. Nếu hai số có chữ số bằng nhau thì so sánh từng cặp chữ số ở cùng một hàng kể từ trái sang phải. + Xếp thứ tự các số tự nhiên: Vì có thể so sánh các số tự nhiên nên có thể xếp thứ tự các số tự nhiên từ bé đến lớn hoặc ngược lại. Ví dụ: Với các số 7698; 7968; 7896; 7869 có thể: + Xếp thứ tự từ bé đến lớn: 7698; 7869; 7896; 7968. + Xếp thứ tự từ lớn đến bé: 7968; 7896; 7869; 7698. Dạng 4 : Toán thực tế. + Sử dụng tính chất bắc cầu để so sánh các bài tập thực tế: a b và b c thì a c. + Dựa vào tập hợp số tự nhiên và thứ tự trong tập hợp các số tự nhiên để suy luận.
Tài liệu dạy thêm - học thêm chuyên đề cách ghi số tự nhiên
Tài liệu gồm 07 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề cách ghi số tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Cách ghi số tự nhiên. I. Phương pháp giải: * Cần phân biệt rõ số với chữ số; số chục với chữ số hàng chục; số trăm với chữ số hàng trăm; …. VD: Số 4315. + Các chữ số là 4, 3, 1, 5. + Số chục là 431, chữ số hàng chục là 1. + Số trăm là 43, chữ số hàng trăm là 3. * Mỗi chữ số ở những vị trí khác nhau sẽ có giá trị khác nhau. Riêng chữ số 0 không thể đứng ở vị trí đầu tiên. * Số nhỏ nhất có n chữ số là 1000….000 (n 1 chữ số 0). * Số lớn nhất có n chữ số là 999….99 (n chữ số 9). Dạng 2 . Viết số tự nhiên có m chữ số từ n chữ số cho trước. * Chọn một chữ số trong các chữ số đã cho làm chữ số hàng cao nhất trong số tự nhiên cần viết. * Lần lượt chọn các số còn lại xếp vào các hàng còn lại. * Cứ làm như vậy cho đến khi lập được hết các số. * Chú ý: Chữ số 0 không thể đứng đầu. Dạng 3 . Tính số các số tự nhiên. * Tính số các số có n chữ số cho trước. + Để tính số các chữ số có n chữ số, ta lấy số lớn nhất có n chữ số trừ đi số nhỏ nhất có n chữ số rồi cộng với 1. + Số các số có n chữ số bằng: 999….99 (n chữ số 9) – 1000….000 (n 1 chữ số 0) + 1. * Để đếm các số tự nhiên từ a đến b, hai số kế tiếp cách nhau d đơn vị, ta dùng công thức sau. Dạng 4 . Đọc và viết các số bằng chữ số La Mã. * Dùng bảng số La Mã sau: * Ta có: I, V, X, L, C, D, M có giá trị tương ứng là 1, 5, 10, 50, 100, 500, 1000. * Ta có: IV, IX, XL, XC, CD, CM có giá trị tương ứng 4, 9, 40, 90, 400, 900. + Chữ số thêm vào bên phải là cộng thêm (nhỏ hơn chữ số gốc) và tuyệt đối không được thêm quá 3 lần số.