Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 (HK2) lớp 8 môn Toán năm 2022 2023 trường THCS Trưng Vương Hà Nội

Nội dung Đề thi giữa học kì 2 (HK2) lớp 8 môn Toán năm 2022 2023 trường THCS Trưng Vương Hà Nội Bản PDF - Nội dung bài viết Đề thi giữa học kì 2 môn Toán lớp 8 năm học 2022-2023 trường THCS Trưng Vương Hà Nội Đề thi giữa học kì 2 môn Toán lớp 8 năm học 2022-2023 trường THCS Trưng Vương Hà Nội Xin chào các thầy cô và các em học sinh lớp 8! Hôm nay, Sytu xin được giới thiệu đến quý vị đề kiểm tra chất lượng giữa học kì 2 môn Toán lớp 8 năm học 2022-2023 tại trường THCS Trưng Vương, quận Hoàn Kiếm, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 11 tháng 03 năm 2023. Đề thi được thiết kế với các câu hỏi thú vị và mang tính logic cao. Một trong số đó là bài toán về tổ may sản xuất áo theo kế hoạch, nhưng đã hoàn thành sớm hơn và sản xuất thêm đơn hàng. Các học sinh sẽ được thách thức tính toán và lập phương trình để giải quyết vấn đề này. Ngoài ra, đề cũng chứa các bài toán về hình học như việc đo chiều rộng của một khúc sông mà không cần phải sang bờ bên kia. Học sinh sẽ phải áp dụng kiến thức về tỷ lệ và hình học để giải quyết bài toán này. Đề cũng đưa ra các bài toán về tam giác và phân đoạn trong tam giác. Học sinh sẽ được yêu cầu tính toán chiều dài cạnh, tìm các tia phân giác và chứng minh các mệnh đề hình học khác nhau. Hy vọng rằng đề thi sẽ giúp các em ôn tập và nắm vững kiến thức, cũng như rèn luyện kỹ năng giải bài toán toán học. Chúc các em thi tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa kì 2 Toán 8 năm 2020 - 2021 trường THCS Cát Linh - Hà Nội
Đề thi giữa kì 2 Toán 8 năm 2020 – 2021 trường THCS Cát Linh – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2021.
Đề thi giữa kì 2 Toán 8 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội
Đề thi giữa kì 2 Toán 8 năm học 2020 – 2021 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 8 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất 20 sản phẩm. Khi thực hiện mỗi ngày tổ đã sản xuất được 25 sản phẩm. Do đó đã hoàn thành trước kế hoạch 1 ngày và còn vượt mức 5 sản phẩm. Hỏi theo kế hoạch tổ phải sản xuất bao nhiêu sản phẩm? + Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ đường cao BE và CF cắt nhau tại H. Gọi K là giao điểm của AH và BC. 1) Chứng minh tam giác BAK đồng dạng với tam giác BCF, từ đó suy ra BA.BF = BK.BC. 2) Chứng minh BKF đồng dạng BAC. 3) Gọi O, I lần lượt là trung điểm của đoạn thẳng BC và AH. Tia EF cắt AK và BC lần lượt tại N, D. Chứng minh ON vuông góc với DI. + Cho phương trình với m là tham số. Tìm m để phương trình có nghiệm duy nhất đạt giá trị lớn nhất.
Đề thi giữa kỳ 2 Toán 8 năm 2020 - 2021 trường THCS Lê Quý Đôn - Hà Nội
Đề thi giữa kỳ 2 Toán 8 năm học 2020 – 2021 trường THCS Lê Quý Đôn, quận Cầu Giấy, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 17 tháng 03 năm 2021.
Đề thi giữa học kì 2 Toán 8 năm 2020 - 2021 trường THCS An Nhơn - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng giữa học kì 2 Toán 8 năm học 2020 – 2021 trường THCS An Nhơn, thành phố Hồ Chí Minh. Trích dẫn đề thi giữa học kì 2 Toán 8 năm 2020 – 2021 trường THCS An Nhơn – TP HCM : + Trong thư viện, tổng số sách hai ngăn đầu là 240 quyển. Lúc sau, cô thư viện bớt 5 quyển ở ngăn thứ nhất và thêm 10 quyển ngăn thứ hai thì lúc này số sách ở ngăn thứ nhất bằng 3 4 số sách ở ngăn thứ hai. Tính số sách mỗi ngăn lúc đầu? ĐS: Số sách ngăn thứ nhất là 110 quyển; ngăn thứ hai là 130 quyển. + Không cần sang sông mà vẫn có thể đo khoảng cách giữa 2 bờ (AB) (hình vẽ canh bên), một người làm như sau: đặt cột mốc ở C rồi căng dây từ C đến A và từ C ngắm 1 đường thẳng đến B. Trên CA lấy F và căng dây FE song song với AB (E thuộc CB). Đo các đoạn thẳng CA = 100 m, CF = 40 m, EF = 30 m. Hãy tính khoảng cách giữa hai bờ (AB) của con sông. ĐS: AB = 75 m. A B C E F. + Cho 4ABC vuông tại A, có đường cao AH (H thuộc BC). a) Chứng minh 4ABC đồng dạng 4AHC. b) Chứng minh AC2 = CH · CB. c) Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Chứng minh: AB3 AC3 = BE CF.