Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT thành phố Ninh Bình Trong đề thi chọn học sinh giỏi môn Toán lớp 8 THCS năm học 2022 - 2023 do phòng Giáo dục và Đào tạo thành phố Ninh Bình tổ chức, có những bài toán thú vị và đầy thách thức dành cho các em học sinh lớp 8. Trong số đó, một vài bài toán đặc biệt như sau: **Bài toán 1:** Một vật thể chuyển động từ A đến B theo cách sau: đi được 4m thì dừng lại 1 giây, rồi đi tiếp 8m dừng lại 2 giây, rồi đi tiếp 12m dừng lại 3 giây... Cứ như vậy đi từ A đến B kể cả dừng hết tất cả 155 giây. Biết rằng khi đi vật thể luôn có vận tốc 2m/giây. Hãy tính khoảng cách từ A đến B. **Bài toán 2:** Cho hình vuông ABCD. Qua A kẻ một đường thẳng cắt đoạn thẳng BC tại P (P khác B, P khác C) và cắt tia DC tại Q. Kẻ đường thẳng vuông góc với AP tại A, đường thẳng này cắt tia CB tại R và cắt tia CD tại S. Tia SP cắt QR tại H. Gọi M, N lần lượt là trung điểm của QR và SP. Chứng minh rằng: a) Tam giác AQR và APS là các tam giác vuông cân. b) Tứ giác AMHN là hình chữ nhật. c) MN là đường trung trực của đoạn thẳng AC. **Bài toán 3:** Cho tam giác ABC có góc ABC = 30°. Dựng bên ngoài tam giác ABC tam giác ACD vuông cân tại D. Chứng minh rằng 2BD² = BA² + BC² + BA.BC. Đây là những bài toán thú vị và mang tính logic cao, chắc chắn sẽ giúp các em học sinh lớp 8 rèn luyện tư duy và kỹ năng giải quyết vấn đề một cách hiệu quả. Hy vọng các em sẽ tự tin và thành công khi giải quyết các bài toán này!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2016 - 2017 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án, lời giải và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác ABC phân giác AD. Trên nửa phẳng không chứa A bờ BC, vẽ tia Cx sao cho BCX = 1/2.BAC. Cx cắt AD tại E; I là trung điểm DE. Chứng minh rằng : a) ΔABD đồng dạng với ΔCED. b) AE2 > AB.AC. c) 4AB.AC = 4AI2 – DE2. d) Trung trực của BC đi qua E. + Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Cho a, b, c là 3 số dương thỏa mãn: 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = 2. Tìm giá trị lớn nhất của biểu thức Q = abc.
Đề giao lưu HSG Toán 8 năm 2016 - 2017 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho tam giác ABC, đường trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM cắt đường thẳng AB và AC lần lượt tại E và F. a) Chứng minh DE + DF = 2AM. b) Đường thẳng qua A song song với BC cắt EF tại N. Chứng minh N là trung điểm của EF. c) Kí hiệu SX là diện tích của hình X. Chứng minh S2 FDC >= 16.SAMC.SFNA. + Trong một đề thi có 3 bài toán A, B, C. Có 25 học sinh mỗi người đều đã giải được ít nhất một trong 3 bài đó. Biết rằng: Trong số thí sinh không giải được bài A thì số thí sinh đã giải được bài B nhiều gấp hai lần số thí sinh đã giải được bài C. Số học sinh chỉ giải được bài A nhiều hơn số thí sinh giải được bài A và thêm bài khác là một người. Số thí sinh chỉ giải được bài A bằng số thí sinh chỉ giải được bài B cộng với số thí sinh chỉ giải được bài C. Hỏi có bao nhiêu thí sinh chỉ giải được bài B? + Cho A = n6 + 10n4 + n3 + 98n – 6n5 – 26 và B = 1 + n3 – n. Chứng minh với mọi n thuộc Z thì thương của phép chia A cho B là bội số của 6.
Đề giao lưu HSG Toán 8 năm 2016 - 2017 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Chí Linh – Hải Dương : + Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ. + Cho tam giác ABC vuông tại A (AB > AC). Kẻ đường cao AH. a) Chứng minh rằng AB2/AC2 = BH/CH. b) Kẻ AD là tia phân giác của góc BAH (D thuộc BH). Chứng minh rằng: DH.DC = BD.HC. c) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh rằng CE // AD. + Cho hai số x, y thỏa mãn x + y = 2 và x2 + y2 = 10. Tính giá trị của biểu thức: M = x3 + y3.
Đề khảo sát HSG Toán 8 năm 2015 - 2016 phòng GDĐT Ý Yên - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định; đề thi có đáp án, lời giải và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định : + Cho hình vuông ABCD có cạnh bằng a, biết hai đường chéo cắt nhau tại O. Lấy điểm I thuộc cạnh AB, điểm M thuộc cạnh BC sao cho IOM = 90 độ (I và M không trùng với các đỉnh của hình vuông). Gọi N là giao điểm của AM và CD, K là giao điểm của OM và BN. 1) Chứng minh ΔBIO = ΔCMO và tính diện tích tứ giác BIOM theo a. 2) Chứng minh BKM = BCO. 3) Chứng minh 1/CD^2 = 1/AM^2 + 1/AN^2. + Cho tam giác ABC (AB < AC), trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB, AC thứ tự ở D và E. Tính giá trị biểu thức AB/AC + AD/AE. + Tính giá trị của biểu thức P biết x, y thỏa mãn đẳng thức.