Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán năm 2018 2019 trường THCS Nguyễn Du Hà Nội

Nội dung Đề KSCL lớp 9 môn Toán năm 2018 2019 trường THCS Nguyễn Du Hà Nội Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2018 - 2019 trường THCS Nguyễn Du Hà Nội Đề KSCL Toán lớp 9 năm 2018 - 2019 trường THCS Nguyễn Du Hà Nội Ngày 22 tháng 05 năm 2019, trường THCS Nguyễn Du – Hoàn Kiếm – Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán năm học 2018 – 2019 cho học sinh lớp 9. Kỳ thi này nhằm mục đích tổng ôn kiến thức Toán trước khi các em thi vào lớp 10 THPT trong năm học tiếp theo. Đề KSCL Toán lớp 9 năm 2018 - 2019 trường THCS Nguyễn Du Hà Nội được biên soạn dưới dạng đề tự luận, bao gồm 1 trang với 5 bài toán, thời gian làm bài 120 phút. Trích dẫn một số câu hỏi từ đề KSCL Toán lớp 9 năm 2018 - 2019 trường THCS Nguyễn Du – Hà Nội: 1. Câu hỏi về hai ôtô khởi hành từ điểm A để đi đến điểm B trên quãng đường dài 120 km. Biết vận tốc trung bình của ô tô thứ nhất lớn hơn vận tốc trung bình của ô tô thứ hai là 12 km/h. Sau cùng, ô tô thứ nhất đã đến B trước ô tô thứ hai 30 phút. Yêu cầu tính vận tốc trung bình của mỗi ô tô. 2. Câu hỏi về parabol và đường thẳng trong mặt phẳng tọa độ Oxy. Yêu cầu chứng minh với mọi giá trị m khác 0, đường thẳng luôn cắt parabol tại hai điểm phân biệt có hoành độ khác nhau. Tiếp theo, tìm tất cả các giá trị m để một đẳng thức được thỏa mãn. 3. Câu hỏi về nửa đường tròn, đường thẳng, và các điểm trên đường tròn. Yêu cầu chứng minh một số tính chất của các điểm và đường thẳng trong bài toán. Đề KSCL Toán lớp 9 năm 2018 - 2019 trường THCS Nguyễn Du Hà Nội không chỉ giúp học sinh ôn tập kiến thức mà còn rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Qua đó, học sinh sẽ tự tin hơn khi đối diện với kỳ thi tuyển sinh vào lớp 10 THPT.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát tháng 11 Toán 9 năm 2019 - 2020 trường Nam Từ Liêm - Hà Nội
Tuần qua, trường THCS Nam Từ Liêm – Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 giai đoạn tháng 11 năm học 2019 – 2020, đây là kỳ thi được tổ chức định kỳ hàng tháng nhằm giúp các em học sinh khối lớp 9 được rèn luyện thường xuyên, hướng đến kỳ thi tuyển sinh vào lớp 10 môn Toán. Đề khảo sát tháng 11 Toán 9 năm 2019 – 2020 trường Nam Từ Liêm – Hà Nội gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 90 phút, đề thi được biên soạn với cấu trúc tương tự đề tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo Hà Nội những năm học trước. Trích dẫn đề khảo sát tháng 11 Toán 9 năm 2019 – 2020 trường Nam Từ Liêm – Hà Nội : + Một chiếc thuyền dự định đi từ vị trí A bên bờ sông bên này sang vị trí B bên bờ sông bên kia. AB vuông góc với hai bờ. Nhưng do dòng nước chảy xiết nên chiếc thuyền đã đi lệch một góc 20° và đến vị trí C bên bờ bên kia. Biết khoảng cách giữa hai bờ là 160m. Tính khoảng cách BC (làm tròn đến chữ số thập phân thứ nhất). [ads] + Cho hàm số bậc nhất y = (m – 1)x + 2m + 1 với m khác 1. a) Vẽ đồ thị hàm số với m = – 2. b) Tìm m để đồ thị hàm số song song với đường thẳng y = 2x + 1. c) Tìm m để đồ thị hàm số cắt đường thẳng y = 2x – 7 tại điểm có hoành độ bằng 2. d) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi m. + Cho đường tròn (O;R) và điểm A là một điểm cố định thuộc đường tròn. Kẻ đường thẳng d tiếp xúc với đường tròn tại A. Trên đường thẳng d lấy điểm M (M khác A), kẻ dây cung AB vuông góc với OM tại H. a) Chứng minh BM là tiếp tuyến của (O) và bốn điểm A, O, M, B cùng thuộc một đường tròn. b) Kẻ đường kính AD của (O), đoạn thẳng DM cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh MA^2 = MH.MO = ME.MD. Từ đó suy ra: góc EHM = góc ODM . c) Qua O kẻ đường thẳng song song với AB cắt MA, MB lần lượt tại P và Q. Tìm vị trí của điểm M trên đường thẳng d để diện tích tam giác MPQ đạt giá trị nhỏ nhất?
Đề kiểm tra chất lượng Toán 9 năm 2019 - 2020 trường Lê Quý Đôn - TP HCM
Nhằm mục đích kiểm tra định kỳ môn Toán lớp 9 giai đoạn giữa học kỳ 1, ngày … tháng 10 năm 2019, trường THCS Lê Quý Đôn, quận 3, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng Toán 9 năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 9 năm 2019 – 2020 trường Lê Quý Đôn – TP HCM gồm có 05 bài toán, đề được biên soạn theo dạng tự luận hoàn toàn, học sinh làm bài trong 90 phút. Trích dẫn đề kiểm tra chất lượng Toán 9 năm 2019 – 2020 trường Lê Quý Đôn – TP HCM : + Hai món hàng: món thứ nhất giá gốc 150.000 đồng, món thứ hai giá gốc 200.000 đồng. Khi bán món thứ nhất lãi 10% và món thứ hai lãi 12% (tính trên giá gốc). Hỏi bán cả hai món thu được tổng cộng bao nhiêu tiền? [ads] + Một chiếc máy bay bay lên với vận tốc 600 km/h. Đường bay lên tạo với phương nằm ngang một góc 30 độ. Hỏi sau 1 phút 12 giây máy bay lên cao được bao nhiêu kilômét theo phương thẳng đứng? + Cho tam giác ABC vuông tại A có đường cao AH. a) Cho CH = 9 cm, AH = 6 cm. Tính độ dài đoạn thẳng BH, BC, AB, AC (kết quả làm tròn đến chữ số thập phân thứ nhất). b) Trên tia đối của tia AB lấy điểm K sao cho góc AKC = 60 độ. Tính độ dài đoạn thẳng AK (kết quả làm tròn đến chữ số thập phân thứ nhất). c) Gọi D và E lần lượt là hình chiếu của H trên AB, AC. Qua A kẻ đường thẳng vuông góc với DE cắt BC tại M (M thuộc BC). Kẻ Cx là tia phân giác của góc ACB, qua M kẻ đường thẳng song song với AC cắt tia Cx tại F (F thuộc tia Cx). Chứng minh: BF vuông góc với Cx.
Đề khảo sát Toán 9 lần 1 năm 2019 - 2020 trường Phạm Hồng Thái - Hà Nội
Đề khảo sát Toán 9 lần 1 năm học 2019 – 2020 trường THCS Phạm Hồng Thái – Hà Nội gồm có 05 bài toán dạng tự luận, thời gian làm bài 60 phút, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020, nhằm giúp giáo viên và nhà trường kiểm tra định kỳ chất lượng học sinh. Trích dẫn đề khảo sát Toán 9 lần 1 năm 2019 – 2020 trường Phạm Hồng Thái – Hà Nội : + Cho ∆ABC vuông ở A, vẽ đường cao AH. Biết BC = 25cm và AB = 15cm. a) Tính BH, AH và góc ABC (số đo góc làm tròn đến độ). b) Trên cạnh AC lấy điểm D bất kì (D khác A và C). Gọi E là hình chiếu của A trên BD. Chứng minh: BH.BC = BE.BD. c) Chứng minh: góc ABD = góc AHE. + Thực hiện phép tính. + Giải các phương trình sau.
Đề kiểm tra định kỳ Toán 9 tháng 102019 trường Thanh Xuân Nam - Hà Nội