Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 5 - 8)

Với mong muốn giúp đỡ các em đẩy mạnh tốc độ làm bài, tránh mất thời gian vào những câu dễ, dành thời gian cho câu khó để đạt điểm cao hơn trong kỳ thi thì tác giả Nguyễn Thế Lực đã viết một cuốn Bí Kíp Casio được hệ thống tuyệt kỹ theo chuyên đề có lời giải chi tiết. Đây là bộ Skill Casio Basic Version dành cho các sĩ tử mong muốn đạt 5 – 8 điểm môn Toán trong kỳ thi THPT Quốc gia, các sĩ tử muốn luyện đạt điểm 8 – 9 – 10 có thể xem thêm cuốn Advance Version Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 – 9 – 10). Nội dung sách : Đề minh họa lần 1, 2 và đề chính thức 2017 kèm đáp án và lời giải chi tiết Bộ tuyệt kỹ Casio 7 ngày 7 điểm Bộ Cửu Âm Chân Kinh: Thập Nhất Thần Chưởng + Tâm pháp 1. Lượng giác + Tâm pháp 2. Tổ hợp – Nhị thức Niu-tơn + Tâm pháp 3. Tu luyện xác suất + Tâm pháp 4. Dãy số, cấp số cộng và cấp số nhân + Tâm pháp 5. Giới hạn – Đạo hàm Bộ Cửu Dương Thần Công: Thập Nhị Đại Pháp [ads] Tâm pháp 1. Hàm số + Tuyệt kỹ 1. Casio giải nhanh sự biến thiên + Tuyệt kỹ 2. Casio hạ gục cực trị + Tuyệt kỹ 3. Casio xử nhanh Min – Max + Tuyệt kỹ 4. Ứng dụng tìm giới hạn của Casio search nhanh tiệm cận + Tuyệt kỹ 5. Casio support tiếp tuyến + Tuyệt kỹ 6. Kỹ thuật Casio giải toán tương giao đồ thị Tâm pháp 2. Mũ – Logarit + Tuyệt kỹ 7. Hàm số mũ – logarit dưới sự trị vì của Casio + Tuyệt kỹ 8. Casio tính, rút gọn, biểu diễn nhanh biểu thức + Tuyệt kỹ 9. Kỹ thuật Calc, Solve, Table hạ gục PT – BPT mũ – logarit Tâm pháp 3. Nguyên hàm – Tích phân + Tuyệt kỹ 10. Casio quyết chiến với nguyên hàm + Tuyệt kỹ 11. Tích phân thầm yêu Casio + Tuyệt kỹ 12. Casio xử đẹp “Tích phân chống Casio” Tâm pháp 4. Số phức + Tuyệt kỹ 13. Casio số phức cơ bản + Tuyệt kỹ 14. Giải nhanh phương trình số phức bằng Casio + Tuyệt kỹ 15. Casio hỗ trợ toán hình học số phức Tâm pháp 5. Hình học Oxyz + Tuyệt kỹ 16. Casio giải nhanh Oxyz Tâm pháp 6. Hình học không gian + Tuyệt kỹ 17. Luyện tay bo giải nhanh hình học 11 + 12 Tâm pháp 7. Toán ứng dụng

Nguồn: toanmath.com

Đọc Sách

201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết (phần 2)
Tài liệu gồm 205 trang, được biên soạn bởi tác giả Nguyễn Thành Nhân, tuyển tập 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án và lời giải chi tiết (phần 2); các câu hỏi được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và các sở GD&ĐT trên toàn quốc. Trích dẫn 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết (phần 2): + Trong các số phức z dưới đây, số phức nào thỏa mãn z 1 và 3 z z 2 đạt giá trị lớn nhất? + Gọi S là tập hợp tất cả các số phức z thoả mãn z 1 34 và z mi z m i 1 2. Gọi 1 2 z z là hai số phức thuộc S sao cho 1 2 z z nhỏ nhất, giá trị của 1 2 z z bằng? + Xét số phức z có phần thực dương và ba điểm A B C lần lượt là điểm biểu diễn của các số phức 1 z z và 1 z z. Biết tứ giác OABC là một hình bình hành, giá trị nhỏ nhất của 2 1 z z bằng? + Một trang giấy A4 kích thức 21 cm x 29,7 cm có thể viết được 50 dòng, mỗi dòng có 75 chữ số (chữ số trong hệ thập phân). Ngày 25 / 01 / 2013, người ta đã tìm được số nguyên tố Mersenne 57885161 2 1. Nếu viết số nguyên tố này theo hệ thập phân trên trang giấy A4 nói trên thì cần bao nhiêu tờ giấy A4, biết rằng mỗi tờ giấy tương ứng với 2 trang? + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu 2 2 2 S x y z x y z 4 4 2 7 0 và đường thẳng m d là giao tuyến của hai mặt phẳng x m y mz 1 2 4 4 0 và 2 2 1 8 0 x my m. Khi m thay đổi các giao điểm của m d và S nằm trên một đường tròn cố định. Tính bán kính r của đường tròn đó.
Tổng hợp công thức Toán THPT - Nguyễn Thanh Tân
Tài liệu gồm 24 trang, được sưu tầm và biên soạn bởi thầy giáo Nguyễn Thanh Tân (giáo viên Toán trường THPT Nho Quan C, tỉnh Ninh Bình), tổng hợp công thức Toán THPT (lớp 10 – lớp 11 – lớp 12).
201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết
Tài liệu gồm 202 trang, tuyển tập 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án và lời giải chi tiết; các câu hỏi được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và các sở GD&ĐT trên toàn quốc. Trích dẫn tài liệu 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết : + Có bao nhiêu số thực m để đường thẳng y x m cắt đồ thị hàm số 1 3 2 2 3 2 3 3 y x m x m x m tại ba điểm phân biệt A m B C 0 sao cho đường thẳng OA là phân giác của góc BOC. + Có bao nhiêu số nguyên a 200 200 để phương trình ln 1 ln 1 x x a e e x x a có nghiệm thực duy nhất. + Ở loài Ong, Ong đực chỉ có mẹ, còn Ong cái có cả bố và mẹ. Hỏi một con Ong đực có tổ tiên ở đời thứ n tuân theo quy luật dãy số nào trong các dãy số sau? + Nhân một ngày Thứ năm đẹp trời nhà Vua đến thăm phủ Hoài Đức và dự lễ hội săn bắn. Trường bắn được xây dựng đặc biệt có dạng một tam giác vuông tại A và AB km 1 như hình vẽ. Con mồi chạy trên cạnh huyền theo hướng từ B đến C. Nhà Vua đứng ở vị trí đỉnh A của tam giác vuông và giương cung bắn. Mũi tên trúng con mồi tại điểm M. Tại đó, người hầu xác định được tích vô hướng giữa chiều mũi tên và hướng chạy con mồi thỏa mãn 7 4 AM BC và 3 4 AM BC. + Cho hàm số y f x có đạo hàm trên và đồ thị C. Tiếp tuyến của đồ thị C tại điểm 2 m có phương trình là y x 4 6. Tiếp tuyến của các đồ thị hàm số y f f x và 2 y f x 3 10 tại điểm có hoành độ bằng 2 có phương trình lần lượt là y b ax và y cx d. Tính giá trị của biểu thức ac S bd có bao nhiêu chữ số?
Chinh phục vận dụng - vận dụng cao Giải tích - Phan Nhật Linh
Tài liệu gồm 526 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tuyển chọn và hướng dẫn giải các bài toán vận dụng – vận dụng cao Giải tích, gồm các chủ đề: hàm số, mũ và logarit, tích phân, số phức, tổ hợp và xác suất; tài liệu giúp các em học sinh lớp 12 rèn luyện để chinh phục mức điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT môn Toán. CHƯƠNG 1: HÀM SỐ. Tính đơn điệu của hàm số. + Bài toán 1: Tính đơn điệu của hàm hợp và hàm tổng. + Bài toán 2: Tính đơn điệu của hàm số chứa trị tuyệt đối. Cực trị của hàm số phần 01. + Bài toán 1: Cực trị của hàm hợp. + Bài toán 2: Cực trị của hàm số chứa trị tuyệt đối. Cực trị của hàm số phần 02. Giá trị lớn nhất – Giá trị nhỏ nhất của hàm số. + Bài toán 1: Tìm GTLN – GTNN của hàm hợp. + Bài toán 2: GTLN – GTNN của hàm số chứa trị tuyệt đối. Tiệm cận của đồ thị hàm số. Sự tương giao của đồ thị hàm số. + Bài toán: Xét sự tương giao và biện luận nghiệm. Tiếp tuyến của đồ thị hàm số. CHƯƠNG 2: MŨ VÀ LOGARIT. Đề vận dụng cho mũ và logarit phần 01. Đề vận dụng cho mũ và logarit phần 02. Đề vận dụng cho mũ và logarit phần 03. Đề vận dụng cao mũ và logarit phần 04. CHƯƠNG 3: TÍCH PHÂN. Đề vận dụng cao tích phân phần 01. Đề vận dụng cao tích phân phần 01. CHƯƠNG 4: SỐ PHỨC. Đề vận dụng cao Số phức phần 01. Đề vận dụng cao số phức phần 02. CHƯƠNG 5: TỔ HỢP XÁC SUẤT. Đề vận dụng cao tổ hợp xác suất.