Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 9 THCS năm 2018 - 2019 sở GDĐT Đăk Lăk

Thứ Tư ngày 10 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Đăk Lăk tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 9 khối THCS năm học 2018 – 2019. Đề thi học sinh giỏi tỉnh Toán 9 THCS năm 2018 – 2019 sở GD&ĐT Đăk Lăk được biên soạn theo dạng tự luận với 06 bài toán, học sinh làm bài thi trong 150 phút, đề thi có lời giải chi tiết, lời giải được biên soạn bởi thầy Nguyễn Dương Hải, giáo viên trường THCS Nguyễn Chí Thanh, thành phố Buôn Ma Thuộc – Đăk Lăk. [ads] Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 THCS năm 2018 – 2019 sở GD&ĐT Đăk Lăk : + Trong mặt phẳng với hệ tọa độ Oxy, một đường thẳng d có hệ số góc k đi qua điểm M(0;3) và cắt parabol (P): y = x^2 tại hai điểm A, B. Gọi C, D lần lượt là hình chiếu vuông góc của A, B lên trục Ox. Viết phương trình đường thẳng d, biết hình thang ABDC có diện tích bằng 20. + Cho hình vuông ABCD. Trên các cạnh CB, CD lần lượt lấy các điểm M, N (M không trùng với B và C; N không trùng với C và D) sao cho góc MAN = 45 độ. Chứng minh rằng đường chéo BD chia tam giác AMN thành hai phần có diện tích bằng nhau. + Tìm tất cả các số tự nhiên có bốn chữ số, biết rằng số đó bằng lập phương của tổng các chữ số của nó.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thừa Thiên Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 04 năm 2022. Trích dẫn đề học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế : + Cho các số thực a, b, c thỏa mãn a khác 0 và 2a + 3b + 6c = 0. Chứng minh rằng phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt x1, x2 và tìm giá trị nhỏ nhất của biểu thức |x1 – x2|. + Tìm các cặp nghiệm nguyên dương (x;y) thỏa mãn phương trình: x2 + y2 + 2(1 + y)x = 14y – 1. + Cho nửa đường tròn đường kính BC = 2R và A là điểm di động trên nửa đường tròn đó. Gọi D là hình chiếu vuông góc của A lên BC và M, N lần lượt là tâm đường tròn nội tiếp các tam giác ABD, ACD. a) Chứng minh: CN vuông góc với AM. b) Chứng minh: DMN và DBA là hai tam giác đồng dạng. c) Gọi d là đường thẳng đi qua A và vuông góc với MN. Chứng minh rằng d luôn đi qua một điểm cố định. d) Tìm vị trí của điểm A để đoạn MN có độ dài lớn nhất và tính độ dài lớn nhất đó theo R.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi (HSG) môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Tuyên Quang. Trích dẫn đề học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Tuyên Quang : + Cho tam giác ABC cân tại A. Gọi D là trung điểm của đoạn thẳng AC. Phân giác trong của góc BAC cắt đường tròn ngoại tiếp tam giác BCD tại E (E thuộc miền trong tam giác ABC). Đường thẳng BD cắt đường tròn ngoại tiếp tam giác ABE tại F khác B. Đường thẳng AF cắt BE tại I và CI cắt BD tại K. a) Chứng minh rằng BI là tia phân giác của góc ABK. b) Gọi M là trung điểm của BC. Chứng minh rằng tứ giác AFMC nội tiếp đường tròn. c) Chứng minh rằng AD2 = DK.DB. + Cho các số nguyên dương a b n không chia hết cho số nguyên tố lẻ p. Chứmg minh rằng A không chia hết cho p. + Trên một tờ giấy A4 kích thước 210mm x 297mm, bạn An vẽ 30 đường tròn bán kính 1cm. Chứng minh rằng sau khi bạn An vẽ 30 đường tròn, bạn Bình luôn dựng được 5 hình vuông có độ dài các cạnh là 2cm mà không có điểm chung với bất kỳ đường tròn nào và hai hình vuông bất kỳ cũng không giao nhau.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Bắc Ninh, tỉnh Bắc Ninh. Trích dẫn đề học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Bắc Ninh : + Tìm tất cả các số nguyên dương n sao cho mỗi số n 26 và n 11 đều là các lập phương của một số nguyên dương. + Cho tam giác nhọn ABC nội tiếp đường tròn O R có B C cố định. Các đường cao AD BE CF của tam giác ABC đồng quy tại H. Đường thẳng chứa tia phân giác ngoài của BHC cắt AB AC lần lượt tại M N. a) Chứng minh rằng tam giác AMN cân. b) Chứng minh OA vuông góc với EF AD BC DE EF FD R. c) Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác của BAC tại K K A. Chứng minh rằng HK luôn đi qua một điểm cố định khi A thay đổi. + Cho mỗi điểm trên mặt phẳng được tô bằng một trong hai màu xanh, đỏ. Chứng minh rằng tồn tại một tam giác mà ba đỉnh và trọng tâm cùng màu.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 02 năm 2022.