Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 12 ôn tập hè 2019 trường Yên Phong 1 Bắc Ninh

Nhằm giúp học sinh lớp 11 lên lớp 12 được ôn lại kiến thức Toán 11 trước khi các em bước vào năm học mới 2019 – 2020, trường THPT Yên Phong số 1, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng ôn tập hè năm 2019 môn Toán lớp 12. Đề kiểm tra Toán 12 ôn tập hè 2019 trường Yên Phong 1 – Bắc Ninh có mã đề 157, đề thi được biên soạn theo dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, đáp ứng đúng yêu cầu thi toán trắc nghiệm theo tinh thần của Bộ Giáo dục và Đào tạo, học sinh làm bài trong 90 phút, đề thi có đáp án mã đề 157, 261, 335, 436. [ads] Trích dẫn đề kiểm tra Toán 12 ôn tập hè 2019 trường Yên Phong 1 – Bắc Ninh : + Một nhóm học sinh lớp 5 gồm học sinh của lớp 5A, 5B, 5C. Trong đó lớp 5A có 1 em, lớp 5B có 4 em, lớp 5C có 3 em. Nhà trường chọn ngẫu nhiên 5 học sinh đi thi nghi thức Đội cấp huyện. Tính xác suất để chọn được học sinh của cả 3 lớp. + Cho hàm số y = f(x) liên tục trên đoạn [a;b]. Mệnh đề nào dưới đây đúng? A. Nếu f(a).f(b) > 0 thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b). B. Nếu phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b) thì f(a).f(b) < 0. C. Nếu f(a).f(b) > 0 thì phương trình f(x) = 0 không có nghiệm nằm trong (a;b). D. Nếu f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b). + Một nhóm có 10 học sinh giỏi, giáo viên chủ nhiệm cần chọn 4 em đi tham dự buổi lễ khen thưởng cuối năm do Huyện tổ chức. Hỏi có bao nhiêu cách chọn?

Nguồn: toanmath.com

Đọc Sách

10 đề ôn tập thi tốt nghiệp THPT môn Toán năm học 2021 - 2022
Tài liệu gồm 61 trang, được biên soạn bởi thầy giáo Lê Quốc Dũng, tuyển tập 10 đề ôn tập thi tốt nghiệp THPT môn Toán năm học 2021 – 2022 có đáp án; các đề được xây dựng bám sát ma trận đề tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán của Bộ Giáo dục và Đào tạo; các câu hỏi và bài toán được chọn lọc từ các đề thi thử TN THPT môn Toán của các trường THPT và sở GD&ĐT trên toàn quốc. Mục lục : Mã đề 2TN01 (Trang 01). Mã đề 2TN02 (Trang 07). Mã đề 2TN03 (Trang 13). Mã đề 2TN04 (Trang 19). Mã đề 2TN05 (Trang 25). Mã đề 2TN06 (Trang 31). Mã đề 2TN07 (Trang 37). Mã đề 2TN08 (Trang 43). Mã đề 2TN09 (Trang 48). Mã đề 2TN10 (Trang 54). Bảng đáp án các mã đề (Trang 60).
Bộ đề phát triển đề tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán
Tài liệu gồm 308 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tuyển tập bộ đề phát triển đề tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán của Bộ Giáo dục và Đào tạo. Các đề được xây dựng dựa trên ma trận đề tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán với các câu hỏi và bài toán có nội dung tương tự và độ khó tương đương, có đáp án và lời giải chi tiết. MỤC LỤC : Đề số 1 1 Đề số 2 16 Đề số 3 32. Đề số 4 50 Đề số 5 66 Đề số 6 82. Đề số 7 98 Đề số 8 114 Đề số 9 130. Đề số 10 146 Đề số 11 162 Đề số 12 177. Đề số 13 194 Đề số 14 210 Đề số 15 226. Đề số 16 242 Đề số 17 258 Đề số 18 277 Đề số 19 291.
Đáp án và lời giải chi tiết đề minh họa tốt nghiệp THPT 2022 môn Toán
giới thiệu đến quý thầy, cô giáo và các em học sinh bảng đáp án và lời giải chi tiết đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán do Bộ Giáo dục và Đào tạo công bố (ngày 31 tháng 03 năm 2022). Bảng đáp án và lời giải chi tiết được thực hiện bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC: 1. Phuong Tran. 2. Trần Minh Hưng. 3. Dương Quang. 4. Huong Nguyen 5. Trung Nguyen. 6. Đỗ Hằng. 7. Nguyễn Thanh Bằng. 8. Liễu Hoàng. 9. Van Anh. 10. Sinh Son Nguyen. 11. Nam Nguyễn. 12. Tho Nguyen. 13. Trịnh Trung Hiếu. 14. Sơn Trường. 15. Hoàng Yến. 16. Phạm Văn Hùng.
Ma trận đề tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán
giới thiệu đến quý thầy, cô giáo và các em học sinh ma trận đề tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán, nhằm giúp các em nắm vững các nội dung cần ôn tập, cũng như phân phối độ khó trong từng nội dung, để có sự chuẩn bị tốt nhất cho kì thi TN THPT môn Toán năm học 2021 – 2022; ma trận đề được biên soạn bởi thầy giáo Hồ Phương Nam (giáo viên Toán trường THPT Lê Lai, tỉnh Thanh Hoá). 11.1 Tổ hợp – xác suất: + Hoán vị – Chỉnh hợp – Tổ hợp. + Cấp số cộng, cấp số nhân. + Xác suất. 11.2 Hình học không gian: + Góc. + Khoảng cách. 12.1 Đạo hàm và ứng dụng: + Đơn điệu của HS. + Cực trị của HS. + Min – Max của hàm số. + Đường tiệm cận. + Khảo sát và vẽ đồ thị. + Tương giao. 12.2 Hàm số mũ – Logarit: + Lũy thừa – mũ – Logarit. + HS Mũ – Logarit. + PT Mũ – Logarit. + BPT Mũ – Logarit. 12.3 Số phức: + Định nghĩa và tính chất. + Phép toán. + PT bậc hai theo hệ số thực. + Min – Max của mô đun số phức. 12.4 Nguyên Hàm – Tích Phân: + Nguyên hàm. + Tích phân. + Ứng dụng TP tính diện tích. + Ứng dụng TP tính thể tích. 12.5 Khối đa diện: + Đa diện lồi – Đa diện đều. + Thể tích khối đa diện. 12.6 Khối tròn xoay: + Khối nón. + Khối trụ. + Khối cầu. 12.7 Giải tích trong không gian: + Phương pháp tọa độ. + Phương trình mặt cầu. + Phương trình mặt phẳng. + Phương trình đường thẳng.