Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp cụm lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa

Nội dung Đề HSG cấp cụm lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa Bản PDF - Nội dung bài viết Đề HSG cấp cụm lớp 7 môn Toán năm 2022-2023 trường THCS Cành Nàng Thanh Hóa Đề HSG cấp cụm lớp 7 môn Toán năm 2022-2023 trường THCS Cành Nàng Thanh Hóa Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 7 đề khảo sát chất lượng cấp cụm môn Toán lớp 7 năm học 2022-2023 của trường THCS Cành Nàng, Thanh Hóa. Đề thi bao gồm đáp án và lời giải chi tiết, được tổ chức vào ngày 29 tháng 01 năm 2023. Dưới đây là một số câu hỏi mẫu từ đề HSG cấp cụm Toán lớp 7 năm 2022-2023 trường THCS Cành Nàng, Thanh Hóa: Tìm tất cả các số tự nhiên a, b sao cho: 2a + 7 = |b - 5| + b - 5. Tìm các giá trị nguyên của x để biểu thức C=$\frac{22}{3x}+4x$ có giá trị lớn nhất. Cho ∆ABC có góc A nhỏ hơn 90 độ. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ∆ABM và ∆ACN. Chứng minh rằng: MC = BN. Chứng minh rằng: BN vuông góc với CM. Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. Đề HSG cấp cụm lớp 7 môn Toán năm 2022-2023 tại trường THCS Cành Nàng, Thanh Hóa không chỉ giúp học sinh ôn tập kiến thức một cách cụ thể mà còn khuyến khích sự sáng tạo, tư duy logic và kỹ năng giải quyết vấn đề của học sinh. Chúc các em có kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 7 năm 2018 - 2019 phòng GDĐT Đông Hưng - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình : + Cho tam giác ABC có góc A tù. Kẽ AD AB và AD = AB (tia AD nằm giữa hai tia AB và AC). Kẽ AE AC và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM DE. + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD = 1/2BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Không dùng máy tính, hãy tính giá trị của biểu thức S.
Đề thi Olympic tài năng trẻ Toán 7 năm 2018 - 2019 quận Đống Đa - Hà Nội
Đề thi Olympic tài năng trẻ Toán 7 năm 2018 – 2019 cụm trường THCS quận Đống Đa – Hà Nội gồm 01 trang với 4 câu tự luận, đề nhằm giao lưu và tuyển chọn các em học sinh giỏi môn Toán lớp 7 tại các trường THCS trên địa bàn quận Đống Đa, Hà Nội để tuyên dương, khen thưởng, thúc đẩy nâng cao chất lượng môn Toán 7.
Đề thi Olympic Toán 7 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. a) Chứng minh rằng: MC = BN và BN CM. b) Kẻ AH BC (H BC). Chứng minh AH đi qua trung điểm của MN. + Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Tính số đo AMB? + Cho biết (x – 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm.
Tuyển tập 150 đề thi học sinh giỏi môn Toán 7 - Hồ Khắc Vũ
Tài liệu gồm 157 trang tuyển tập 150 đề thi chọn học sinh giỏi môn Toán lớp 7 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.