Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán tháng 1 năm 2020 trường THCS Phúc Diễn Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán tháng 1 năm 2020 trường THCS Phúc Diễn Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát lớp 9 môn Toán tháng 1 năm 2020 trường THCS Phúc Diễn Hà Nội Đề khảo sát lớp 9 môn Toán tháng 1 năm 2020 trường THCS Phúc Diễn Hà Nội Vào thời điểm trước kỳ nghỉ Tết Nguyên Đán, học sinh lớp 9 của trường THCS Phúc Diễn, quận Bắc Từ Liêm, thành phố Hà Nội đã tham gia kỳ thi kiểm tra khảo sát môn Toán tháng 1 năm 2020. Đề khảo sát Toán lớp 9 tháng 1 năm 2020 tại trường THCS Phúc Diễn – Hà Nội bao gồm tổng cộng 04 bài toán tự luận, với thời gian làm bài là 90 phút. Trích dẫn đề khảo sát Toán lớp 9 tháng 1 năm 2020 trường THCS Phúc Diễn – Hà Nội: Cho hàm số y = (m + 1)x - 2 có đồ thị là đường thẳng d. a) Tìm giá trị của m để đồ thị hàm số d cắt đồ thị hàm số y = x + 3 tại một điểm có tung độ là 2. b) Vẽ đồ thị của hàm số tìm được ở câu a. Tính diện tích của tam giác được tạo bởi đồ thị hàm số với hai trục tọa độ. Giải bài toán bằng cách lập hệ phương trình: Hai tổ sản xuất trong tháng đầu sản xuất tổng cộng 300 sản phẩm. Sang tháng thứ hai, tổ 1 tăng sản lượng lên 25%, trong khi tổ 2 giảm 10% so với tháng đầu. Kết quả là cả hai tổ sản xuất được 5 sản phẩm nhiều hơn so với tháng trước. Hãy tính số sản phẩm mỗi tổ sản xuất trong tháng đầu. Với đường tròn tâm O bán kính R và điểm A ở ngoài đường tròn. Kẻ tiếp tuyến AB với đường tròn tại B. Kẻ đường kính BC và nối AC cắt đường tròn tại E. Chứng minh rằng: EC.AC = 4R^2. Chứng minh rằng: MC || AO. Chứng minh rằng: KC là tiếp tuyến của đường tròn. Chứng minh rằng: BC là tiếp tuyến của đường tròn đường kính AK. Các học sinh đã thể hiện sự nỗ lực và tư duy logic trong quá trình giải các bài toán này, từ đó cống hiến cho việc học tập và phát triển của mình. Kỳ thi đã giúp đánh giá và định hình kiến thức của học sinh, từ đó giúp họ chuẩn bị tốt hơn cho các thử thách sau này.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 tháng 01 năm 2022 trường M.V. Lômônôxốp - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán 9 tháng 01 năm 2022 trường THCS & THPT M.V. Lômônôxốp – Hà Nội.
Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Tây Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra khảo sát chất lượng môn Toán lớp 9 năm học 2021 – 2022 trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 14 tháng 01 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Tây Sơn – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai vòi nước cùng chảy vào một cái bể không có nước thì sau 6 giờ bể sẽ đầy nước. Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2 5 bể. + Cho hai hàm số y m 3x m 1 và y 2x 3 có đồ thị lần lượt là (d1) và (d2) a) Với m = 1, tìm tọa độ giao điểm của hai đường thẳng trên. b) Chứng minh rằng điểm cố định mà đường thẳng (d1) luôn đi qua thuộc đường thẳng (d) có phương trình: y 3x 1. + Cho ∆ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD, CE cắt nhau tại H. 1) Chứng minh rằng: 4 điểm B, E, D, C cùng thuộc một đường tròn. 2) Chứng minh rằng: AE.AB = AD.AC. 3) Vẽ đường kính AK của đường tròn (O). Gọi I là trung điểm của BC. a) Chứng minh rằng: ba điểm H, I, K thẳng hàng. b) Chứng minh rằng: ED < 2OI.
Đề khảo sát Toán 9 tháng 1 năm 2022 trường THCS Nguyễn Trường Tộ - Hà Nội
Đề khảo sát Toán 9 tháng 1 năm 2022 trường THCS Nguyễn Trường Tộ – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giao đề). Trích dẫn đề khảo sát Toán 9 tháng 1 năm 2022 trường THCS Nguyễn Trường Tộ – Hà Nội : + Cho hệ phương trình mx y m x my (m là tham số). a) Giải hệ phương trình khi m = 2. b) Tìm m để đường thẳng (1) cắt đường thẳng (2) tại một điểm cách đều các trục tọa độ. + Cho đường tròn tâm O có dây AB R 2. Đường kính CD vuông góc với AB tại I (D thuộc cung nhỏ AB). Trên tia đối của tia BA lấy điểm E sao cho ACE nhọn. CE cắt (O) tại K, nối DK cắt AB tại M. a) Chứng minh 4 điểm C, I, M, K cùng thuộc một đường tròn. b) Chứng minh EM EI EB EA c) Chứng minh DK là phân giác của góc AKB. Tìm vị trí điểm E trên tia đối của tia BA (vẫn thỏa mãn đề bài) để M là trung điểm của BI. + Cho các số thực x, y thỏa mãn x xy y Chứng minh x y 0.
Đề thi khảo sát Toán 9 tháng 01 năm 2022 trường THCS Ngọc Thụy - Hà Nội
Thứ Năm ngày 20 tháng 01 năm 2022, trường THCS Ngọc Thụy, quận Long Biên, thành phố Hà Nội tổ chức kì thi khảo sát chất lượng môn Toán lớp 9 tháng 01 năm học 2021 – 2022. Đề thi khảo sát Toán 9 tháng 01 năm 2022 trường THCS Ngọc Thụy – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giao đề). Trích dẫn đề thi khảo sát Toán 9 tháng 01 năm 2022 trường THCS Ngọc Thụy – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một mảnh đất hình chữ nhật có chu vi là 120m. Nếu tăng chiều rộng 5m và giảm chiều dài đi 25% thì chu vi mảnh đất giảm đi 10m. Tính diện tích của mảnh đất hình chữ nhật ban đầu? + Hằng năm có một số nơi cứ mỗi độ xuân về, mọi người lại sửa soạn đón chào năm mới cùng với việc chuẩn bị cỗ bàn để cúng gia tiên, tiễn đưa ông táo về trời … thì nhà nào cũng trồng một cây nêu trước cổng nhà. Phong tục này đã được người dân Việt duy trì từ bao đời nay. Giả sử một cây nêu trồng thẳng đứng vuông góc với mặt đất (bỏ qua độ cong của phần ngọn), mặt trời chiếu xuống tạo bóng của cây nêu trên mặt đất cách gốc cây 4,6m , tia nắng mặt trời chiếu xuống hợp với mặt đất một góc o 53. Tính chiều cao của cây nêu? (Kết quả làm tròn đến hàng phần nguyên). + Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên tia Ax, M ≠ A, kẻ tiếp tuyến MC với nửa đường tròn (O), đường thẳng MO cắt nửa (O) tại D và cắt AC tại E. 1) Chứng minh rằng bốn điểm M, A, O, C cùng thuộc một đường tròn. 2) Chứng minh MD.EA = MA.ED. 3) Từ O kẻ đường thẳng song song với AC cắt MC tại K. Xác định vị trí của M để tích OD MK nhỏ nhất, tìm giá trị nhỏ nhất đó theo R.