Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

69 bài toán ứng dụng trong đề thi THPT Quốc gia 2017 - Nguyễn Phú Khánh

Tài liệu gồm 9 với 69 bài toán ứng dụng thường gặp trong đề thi  thử THPT Quốc gia 2017. Trích dẫn tài liệu : + Một giáo viên đang đau đầu về việc lương thấp và phân vân xem có nên tạm dừng niềm đam mê với con chữ để chuyển hẳn sang kinh doanh đồ uống trà sữa hay không. Ước tính nếu giá 1 ly trà sữa là 20(ngàn đồng) thì trung bình hàng tháng có khoảng 1000 lượt khách tới uống nước tại quán,trung bình mỗi khách lại trả thêm 10(ngàn đồng) tiền bánh tráng trộn để ăn kèm. Nay nguời giáo viên muốn tăng thêm mỗi ly trà sữa 5(ngàn đồng) thì sẽ mất khoảng 100 khách trong tổng số trung bình. Hỏi giá 1 ly trà sữa nên là bao nhiêu để tổng thu nhập lớn nhất (giả sử tổng thu chưa trừ vốn). A. Giảm 15 ngàn đồng B. Tăng 5 ngàn đồng C. Giữ nguyên không tăng giá D. Tăng thêm 2,5 ngàn đồng [ads] + Một con cá hồi bơi ngược dòng (từ nơi sinh sống) để vượt khoảng cách 300km (tới nơi sinh sản). Vận tốc dòng nước là 6km /h. Giả sử vận tốc bơi của cá khi nước đứng yên là v km/h thì năng lượng tiêu hao của cá trong t giờ cho bởi công thức E(v) = cv3t. trong đó c là hằng số cho trước; E tính bằng jun. Vận tốc bơi của cá khi nước đứng yên để năng lượng của cá tiêu hao ít nhất bằng? + Khi sản xuất vỏ lon sữa bò hình trụ, các nhà thiết kế luôn đặt mục tiêu sao cho chi phí nguyên liệu làm vỏ lon là ít nhất, tức là diện tích toàn phần của hình trụ là nhỏ nhất. Muốn thể tích khối trụ đó bằng 2 và diện tích toàn phần phần hình trụ nhỏ nhất thì bán kính đáy gần số nào nhất?

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn tập lý thuyết thi tốt nghiệp Trung học Phổ thông môn Toán
Tài liệu gồm 21 trang, được biên soạn bởi thầy giáo Huỳnh Phú Sĩ, hướng dẫn học sinh lớp 12 ôn tập lý thuyết để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. MỤC LỤC : Chủ đề 1 . Khảo sát sự biến thiên và đồ thị của hàm số 2. 1. Sự biến thiên của hàm số 2. 2. Cực trị của hàm số 2. 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3. 4. Đường tiệm cận 3. 5. Khảo sát đồ thị hàm số 3. Chủ đề 2 . Lũy thừa – Mũ – Logarit 6. 1. Lũy thừa 6. 2. Hàm số lũy thừa 7. 3. Logarit 7. 4. Hàm số mũ và hàm số logarit 8. 5. Phương trình mũ và phương trình logarit 9. 6. Bất phương trình mũ và bất phương trình logarit 9. Chủ đề 3 . Nguyên hàm – Tích phân và ứng dụng 10. 1. Nguyên hàm 10. 2. Tích phân 10. 3. Ứng dụng của tích phân trong hình học 11. Chủ đề 4 . Số phức 12. 1. Số phức 12. 2. Phép cộng, trừ, nhân, chia số phức 12. Chủ đề 5 . Khối đa diện 13. 1. Khái niệm về hình đa diện và khối đa diện 13. 2. Khối đa diện đều 13. 3. Thể tích khối đa diện 13. Chủ đề 6 . Khối tròn xoay 14. 1. Hình nón và hình trụ 14. 2. Hình cầu 14. Chủ đề 7 . Phương pháp tọa độ trong không gian 16. 1. Hệ tọa độ Oxyz 16. 2. Phương trình mặt cầu 17. 3. Phương trình mặt phẳng 17. 4. Phương trình đường thẳng 18. Chủ đề 8 . Dãy số – Quy tắc đếm – Xác suất – Góc – Khoảng cách 19. 1. Dãy số 19. 2. Quy tắc đếm 19. 3. Xác suất 20. 4. Góc và Khoảng cách trong không gian.
Làm ngược và loại trừ trong giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Trần Tuấn Anh, hướng dẫn sử dụng phương pháp làm ngược và loại trừ trong giải toán trắc nghiệm. 1. “Làm ngược”: Từ đáp án, kiểm tra các điều kiện của bài toán để xác thực tính đúng – sai: Ta cần chú ý rằng, các đáp án cũng chính là giả thiết của bài toán, gợi ý giúp ta giải quyết bài toán trắc nghiệm. 2. “Loại trừ”: Từ giả thiết, bóc tách ra các điều kiện độc lập, kiểm tra các đáp án vi phạm điều kiện để loại trừ. Đối với câu hỏi có chọn lựa phương án đúng, đáp án nào vi phạm điều kiện bài toán, sẽ bị loại trừ. Nếu câu hỏi trắc nghiệm có bốn đáp án, mà trong đó có một đáp án đúng, chúng ta xác định được ba trong bốn đáp án đã cho là sai thì đáp án đúng là đáp án còn lại. Xem thêm : + Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm – Trần Tuấn Anh + Phương pháp chọn đại diện giải toán trắc nghiệm – Trần Tuấn Anh