Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 10 lần 2 năm 2022 - 2023 trường THPT chuyên Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chuyên đề môn Toán 10 lần 2 năm học 2022 – 2023 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc; đề thi mã đề 132, hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài: 90 phút (không kể thời gian giao đề). Trích dẫn Đề kiểm tra Toán 10 lần 2 năm 2022 – 2023 trường THPT chuyên Vĩnh Phúc : + Một người đi bộ xuất phát từ B trên một bờ sông (coi là đường thẳng) với vận tốc 6 km/h để gặp một người chèo thuyền xuất phát cùng lúc từ vị trí A với vận tốc 3 km/h. Nếu người chèo thuyền di chuyển theo đường vuông góc với bờ thì phải đi một khoảng cách AH m 300, trong đó BH m 1400. Tuy nhiên, nếu di chuyển theo cách đó thì hai người không đến cùng một lúc. Để hai người đến cùng một lúc thì mỗi người di chuyển về vị trí C nằm giữa H và B. Thời gian từ khi xuất phát cho đến khi hai người gặp nhau là A. 20 phút. B. 15 phút. C. 10 phút D. 30 phút. + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên; h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2m. Sau đó 1 giây, nó đạt độ cao 8,5m và 2 giây sau khi đá lên, nó đạt độ cao 6m. Hỏi sau bao lâu thì quả bóng sẽ chạm đất kể từ khi được đá lên (tính chính xác đến hàng phần trăm? A. 2,56 giây B. 2,57 giây C. 2,58 giây D. 2,59 giây. + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra định kỳ lần 2 Toán 10 năm 2019 - 2020 trường THPT chuyên Bắc Ninh
Đề kiểm tra định kỳ lần 2 Toán 10 năm học 2019 – 2020 trường THPT chuyên Bắc Ninh gồm có hai đề riêng biệt: đề dành cho các lớp 10 chuyên Vật lý – chuyên Hóa học – chuyên Tin học và đề dành cho các lớp 10 chuyên Ngữ Văn – chuyên Sinh học – chuyên Tiếng Anh, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề kiểm tra định kỳ lần 2 Toán 10 năm 2019 – 2020 trường THPT chuyên Bắc Ninh : + Cho hàm số y = -x^2 + (2m – 3)x + 1 – m^2 (trong đó m là tham số). a) Lập bảng biến thiên và vẽ đồ thị hàm số với m = 2. b) Tìm tất cả giá trị của m đề đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác O và nằm khác phía nhau đối với điểm O. c) Tìm điều kiện của tham số m để hàm số đã cho nghịch biến trên khoảng (0;2019). + Trên mặt phẳng tọa độ Oxy cho bốn điểm A(0;1), B(-1;3), C(5;6), D(4;3). a ) Chứng tỏ rằng bốn điểm đã cho tạo thành một hình thang có đáy là AD và BC. b) Biết I là điểm thỏa mãn 2.IA + 2.IB + 3.IC + 3.ID = 0. Chứng minh I nằm trên đường trung bình của hình thang tạo bởi bốn điểm đã cho. + Cho ba số thực không âm a, b, c thỏa mãn a + b + c = 3 và không có số nào lớn hơn 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = √(1 + a) + √(1 + b) + √(1 + c).
Đề kiểm tra Toán 10 năm học 2019 - 2020 trường THPT Đống Đa - Hà Nội
giới thiệu đến quý thầy, cô cùng các em học sinh đề kiểm tra giữa học kì 1 môn Toán 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội, đề gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề kiểm tra Toán 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội : + Xét tính chẵn lẻ của hàm số y = 2x^3 – 3x. + Tìm m sao cho hàm số sau là hàm số chẵn: y = x^4 – 3x^2 + (m – 2)x + 4m – 1. + Cho tam giác ABC với trọng tâm G. a) Chứng minh rằng với mọi điểm D bất kì ta luôn có AC + DA + BD = AD – CD + BA. b) Tìm tập hợp các điểm M thỏa mãn |AB + MA| = |AB – AC|. c) Gọi I là điểm đối xứng với A qua B, đường thẳng IG cắt AC tại E. Tính tỉ số EA/EC.
Đề kiểm tra Toán 10 đầu năm học 2019 - 2020 trường Ngô Gia Tự - Phú Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra chất lượng môn Toán 10 đầu năm học 2019 – 2020 trường THPT Ngô Gia Tự – Phú Yên, đề thi gồm 04 trang với 35 câu trắc nghiệm và 03 câu tự luận, học sinh làm bài trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm tra Toán 10 đầu năm học 2019 – 2020 trường Ngô Gia Tự – Phú Yên : + Trong các phát biểu thành lời mệnh đề “∃x thuộc R | x^2 = 2” phát biểu nào sau đây là đúng? A. Nếu x là số thực thì bình phương của nó bằng 2. B. Bình phương của mọi số thực đều bằng 2. C. Có ít nhất một số thực mà bình phương của nó bằng 2. D. Có duy nhất một số thực mà bình phương của nó bằng 2. [ads] + Trong các phát biểu sau, có bao nhiêu phát biểu là mệnh đề? a/ Tuy Hòa là thành phố của tỉnh Bình Định. b/ Sông Đà rằng chảy qua thành phố Tuy Hòa. c/ Trời hôm nay nắng đẹp quá! d/ 6 + 8 = 15. e/ x + 2 = 3. + Cách phát biểu nào sau đây không thể dùng để phát biểu mệnh đề A ⇒ B. A. B là điều kiện đủ để có A. B. A kéo theo B. C. Nếu A thì B. D. A là điều kiện đủ để có B.
Đề thi KSCL đầu năm Toán 10 năm 2019 - 2020 trường Hải An - Hải Phòng
Tuần qua, trường THPT Hải An (Nam Hải, Hải An, Hải Phòng) đã tổ chức kỳ thi khảo sát chất lượng đầu năm học 2019 – 2020 môn Toán lớp 10, nhằm đánh giá tình hình học tập của học sinh khối 10 của nhà trường sau những tuần học đầu tiên. Đề thi KSCL đầu năm Toán 10 năm 2019 – 2020 trường Hải An – Hải Phòng có mã đề 134, đề được biên soạn theo dạng đề trắc nghiệm khách quan hoàn toàn với 50 câu hỏi và bài toán, đề thi gồm có 01 trang, thời gian làm bài dành cho học sinh là 90 phút, nội dung kiểm tra nằm trong những chủ đề kiến thức Toán 10 mà học sinh vừa được học, đề kiểm tra có đáp án các mã đề 134, 210, 356, 483, 568, 641, 709, 897. [ads] Trích dẫn đề thi KSCL đầu năm Toán 10 năm 2019 – 2020 trường Hải An – Hải Phòng : + Mệnh đề nào sau đây đúng: A. Hai vectơ cùng phương với một vectơ thứ ba thì cùng phương. B. Hai vectơ cùng phương với một vectơ thứ ba khác vectơ 0 thì cùng phương. C. Hai vectơ cùng phương với một vectơ thứ ba thì cùng hướng. D. Hai vectơ ngược hướng với một vectơ thứ ba thì cùng hướng. + Cho tam giác ABC có với các yếu tố trong hình vẽ bên (H1.1). Khi đó đẳng thức nào sau đây đúng? + Chọn khẳng định sai: A. Nếu I là trung điểm đoạn AB thì AI + IB = AB. B. Nếu I là trung điểm đoạn AB thì IA + BI = 0. C. Nếu I là trung điểm đoạn AB thì AI + BI = 0. D. Nếu I là trung điểm đoạn AB thì IA + IB = 0.