Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 9 năm 2023 - 2024 trường chuyên KHTN - Hà Nội (Vòng 1 - Đợt 1)

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 năm học 2023 – 2024 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, thành phố Hà Nội (Vòng 1 – Đợt 1); kỳ thi được diễn ra vào ngày 20 tháng 01 năm 2024. Trích dẫn Đề kiểm tra Toán 9 năm 2023 – 2024 trường chuyên KHTN – Hà Nội (Vòng 1 – Đợt 1) : Cho tam giác nhọn ABC nội tiếp trong đường tròn (O). Các điểm E và F lần lượt nằm trên các cạnh CA và AB sao cho EF song song với BC. Các đường thẳng BE và CF theo thứ tự cắt các tiếp tuyến tại C và B của (O) lần lượt tại K và L. 1) Đường thẳng qua B và song song với AC theo thứ tự cắt KC và KA tại X và Y. Chứng minh rằng hai tam giác XBC và BCA đồng dạng. 2) Đường thẳng qua C song song với AB theo thứ tự cắt LB và LA lần lượt tại Z và T. Chứng minh rằng XB AF ZC AE. 3) Đường thẳng qua E song song với AB lần lượt cắt AK và AL tại M và N. Đường thẳng qua F song song với AC lần lượt cắt AK và AL tại P và Q. Chứng minh rằng bốn điểm M, N, P và Q cùng thuộc vào một đường tròn.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá
Nội dung Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Bản PDF - Nội dung bài viết Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán để ôn thi tuyển sinh vào lớp 10 THPT năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá. Kỳ thi sẽ diễn ra vào ngày 02 tháng 06 năm 2022. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề KSCL Toán vào lớp 10 năm 2022 - 2023 của phòng GD&ĐT Thọ Xuân - Thanh Hoá: + Cho nửa đường tròn có tâm O, bán kính R, đường kính AB, I là điểm cố định thuộc đoạn thẳng OB. Vẽ đường thẳng d vuông góc với AB tại I, d cắt nửa đường tròn tại K. Lấy điểm M thuộc cung nhỏ BK, tia BM cắt đường thẳng d tại C, đoạn thẳng AM cắt đường thẳng d tại N, AC cắt nửa đường tròn tại D. a) Chứng minh tứ giác BMNI là tứ giác nội tiếp b) Chứng minh ba điểm B, N, D thẳng hàng và tính AD.AC + BM.BC theo R c) Chứng minh O’ luôn nằm trên một đường thẳng cố định khi M di chuyển trên cung nhỏ KB. + Trong hệ trục tọa độ Oxy, cho parabol (P): y = 2x^2 và đường thẳng (d): y = (m + 1)x – m + 3 (m là tham số ) a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm A và B phân biệt với mọi giá trị của m b) Tìm giá trị m để 2y1 + 2y2 = (m + 1)x2 + 2 + 8. + Cho 3 số thực dương x, y, z thỏa mãn: x^2 + y^2 + z^2 = 1. Tìm giá trị nhỏ nhất của biểu thức: 2x^2y^2z^2 + y^2z^2x^2 + z^2x^2y^2. Đề thi năm nay đòi hỏi kiến thức và sự sáng tạo của các em học sinh. Chúc các em có kết quả tốt trong kỳ thi sắp tới!