Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bắc Ninh

Nội dung Đề kiểm tra giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề kiểm tra giữa học kỳ 2 lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Bắc Ninh Đề kiểm tra giữa học kỳ 2 lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Bắc Ninh Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kỳ 2 môn Toán lớp 9 năm học 2022-2023 của sở GD&ĐT Bắc Ninh. Đề thi được thiết kế với 30% câu hỏi trắc nghiệm và 70% câu hỏi tự luận, với 06 câu trắc nghiệm và 03 câu tự luận. Thời gian làm bài là 90 phút (không tính thời gian phát đề). Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Kỳ thi sẽ diễn ra vào thứ Năm, ngày 16 tháng 03 năm 2023. Trích dẫn từ Đề kiểm tra giữa học kỳ 2 Toán lớp 9 năm 2022-2023 sở GD&ĐT Bắc Ninh: Cho các khẳng định sau: (1) Góc nội tiếp có số đo bằng nửa số đo góc ở tâm. (2) Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn. (3) Số đo góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. Số khẳng định đúng là? Cho tam giác ABC vuông tại A. Trên AC lấy điểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại E. Chứng minh rằng: a) ABCD là tứ giác nội tiếp. b) ABD= ACD. c) CA là tia phân giác của ECB. Vẽ đồ thị P của hàm số y = 2x. Cho hai điểm A(1,1) và B(3,9) nằm trên P. Gọi M là điểm thay đổi trên P có hoành độ là m, m₁<3. Tìm m để tam giác ABM có diện tích lớn nhất. File Word đề thi tại đây (dành cho thầy, cô giáo).

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa kỳ 2 Toán 9 năm 2020 - 2021 trường THCS Sơn Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giữa kỳ 2 Toán 9 năm học 2020 – 2021 trường THCS Sơn Đông, thị xã Sơn Tây, thành phố Hà Nội.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT Hà Đông - Hà Nội
Thứ Tư ngày 31 tháng 03 năm 2021, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa kì 2 môn Toán lớp 9 năm học 2020 – 2021. Đề thi giữa kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút.
Đề thi giữa HK2 Toán 9 năm 2020 - 2021 trường THCS Hoàng Hoa Thám - Hà Nội
Đề thi giữa HK2 Toán 9 năm 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội
Đề thi giữa kì 2 Toán 9 năm học 2020 – 2021 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 9 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội : + Hai bạn An và Tâm được phân công chuẩn bị tài liệu cho buổi thuyết trình trước lớp về ý nghĩa của “Giờ trái đất”. Biết rằng nếu hai bạn cùng làm thì sau 2 giờ 24 phút sẽ xong. Nhưng khi làm chung được 1 giờ thì Tâm có việc bận phải về, còn một mình An làm nốt trong 2 giờ 20 phút nữa mới xong. Hỏi nếu mỗi bạn làm một mình thì sau bao lâu sẽ xong công việc? + Cho các đường thẳng (d): y = -2x + 3; (d’): y = (m – 1)x + 2m – 1 và parabol (P): y = x2. a) Tìm tọa độ giao điểm của (d) và (P). b) Tìm m biết đường thẳng (d’) song song với đường thẳng (d). Khi đó, giả sử (d’) cắt Ox tại A, cắt Oy tại B. Tính diện tích tam giác OAB. c) Tìm m để (d’) cắt (P) tại 2 điểm phân biệt D, E sao cho trung điểm I của DE nằm trên Oy. + Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm); đường thẳng d đi qua A và cắt (O) tại C, D (C nằm giữa A và D). Gọi I là trung điểm của CD. a) Chứng minh các điểm A, B, I và O cùng nằm trên một đường tròn. b) Chứng minh AC.AD = AB2. c) Qua B kẻ đường thẳng vuông góc với OA, đường thẳng này cắt (O;R) tại E. Chứng minh AB là tiếp tuyến của (O;R) và góc BEA = 1/2 góc BIE. d) Khi đường thẳng d thay đổi sao cho BDE có ba góc nhọn, gọi H là trực tâm BDE. Tính OA theo R để H chạy trên đường tròn ngoại tiếp ABE.