Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường chuyên Nguyễn Tất Thành Yên Bái

Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường chuyên Nguyễn Tất Thành Yên Bái Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT chuyên Nguyễn Tất Thành, tỉnh Yên Bái; đề thi gồm 35 câu trắc nghiệm (70% số điểm) và 03 câu tự luận (30% số điểm), thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề cuối kì 1 Toán lớp 10 năm 2022 – 2023 trường chuyên Nguyễn Tất Thành – Yên Bái : + Kết quả dự báo nhiệt độ cao nhất trong 10 ngày liên tiếp từ 30/12/2022 đến 8/1/2023 tại Sa Pa được cho trong bảng sau Ngày/tháng 30/12 31/12 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1 Nhiệt độ (0 C) 5 6 8 9 8 11 11 12 11 12 a) Tính số trung bình và khoảng biến thiên nhiệt độ cao nhất trong 10 ngày liên tiếp tại Sa Pa được cho trong bảng trên. b) Tính phương sai và độ lệch chuNn cho mẫu số liệu này. + Trên mặt phẳng tọa độ Oxy cho hai điểm A B 1 3 5 1. Tìm tọa độ điểm M thuộc trục Ox sao cho độ dài MA MB là ngắn nhất. + Bạn An có 48 g bột nho và 240 g đường. An muốn pha chế thành hai loại nước nho A và B để bán trong một sự kiện gây quỹ cho lớp. Để pha chế 1 lít nước nho loại A cần 30 g đường và 4 g bột nho; pha chế 1 lít nước nho loại B cần 20 g đường và 8 g bột nho. Mỗi lít nước nho loại A bán lãi 40 nghìn đồng, mỗi lít nước nho loại B bán lãi 60 nghìn đồng. Hỏi bạn An nên pha chế bao nhiêu lít nước nho mỗi loại để thu được lợi nhuận cao nhất. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Lê Quý Đôn - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Lê Quý Đôn, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Lê Quý Đôn – TP HCM : + Cho a >= b. Chứng minh: a3 – b3 >= 3ab(a – b). + Cho tứ giác ABCD. Gọi E; F; I lần lượt là trung điểm AB; CD; EF. a) Chứng minh: AD + BC = 2EF. b) Gọi H; K lần lượt là trung điểm AD; BC. Tính: |IH + IK|. + Cho tam giác ABC có AB = 3, AC = 5, BAC = 120 độ. M thuộc cạnh BC sao cho BM = 2/7BC. a) Tính diện tích S và bán kính đường tròn ngoại tiếp R của tam giác ABC. b) Tính BA.BC và độ dài AM.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Bạn Nhi dùng 60 m lưới B40 rào thành một mảnh vườn hình chữ nhật để trồng hoa tết. Biết rằng một cạnh của vườn là bờ sông nên Nhi chỉ cần rào 3 cạnh còn lại của mảnh vườn hình chữ nhật. Theo em, bạn Nhi nên tính toán các kích thước của mảnh vườn như thế nào để diện tích trồng hoa là lớn nhất? Tính diện tích lớn nhất đó. + Xác định parabol (P): y = ax2 + bx + 2 biết (P) đi qua điểm A(2;4) và (P) nhận đường thẳng x = 5/6 làm trục đối xứng. + Tính diện tích tam giác MNP trong hình vẽ sau (biết G là trọng tâm của tam giác).
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Trần Nhân Tông - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Trần Nhân Tông, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Trần Nhân Tông – TP HCM : + Trong mặt phẳng toạ độ Oxy cho ba điểm A(4;2), B(-2;0), C(2;4). Chứng minh tam giác ABC vuông. + Trong mặt phẳng toạ độ Oxy cho ba điểm A(0;1 + √3), B(2;1 + √3) và đường thẳng (d): 3x – y – 2 = 0. Tìm điểm C trên đường thẳng (d) sao cho tam giác ABC là tam giác đều. + Cho phương trình x^2 – 2(1 – m)x – 4m + 4 = 0. Tìm điều kiện của tham số m để phương trình có hai nghiệm x1 và x2 thỏa mãn (x1 – x2)^2 + x1x2 = 16.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Trần Hữu Trang - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Trần Hữu Trang, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Trần Hữu Trang – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho A (0;1), B (5;1), C (2;5). Tìm tọa độ chân đường cao xuất phát từ đỉnh C. + Tìm m để phương trình x^2 – (m + 3)x + m + 2 = 0 có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 = 3×2. + Lập bảng biến thiên và vẽ parabol y = x^2 – 4x – 1.