Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối HK1 Toán 10 năm 2023 - 2024 trường THPT Tân Hiệp - Tiền Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán 10 năm học 2023 – 2024 trường THPT Tân Hiệp, tỉnh Tiền Giang; kỳ thi được diễn ra vào ngày 26 tháng 12 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối HK1 Toán 10 năm 2023 – 2024 trường THPT Tân Hiệp – Tiền Giang : + Cho biểu đồ biểu diễn lợi nhuận của 4 chi nhánh A, B, C, D của một doanh nghiệp trong năm 2020-2021. Tìm nhận định đúng? A. Lợi nhuận thu được của các chi nhánh trong năm 2020 đều thấp hơn năm 2021 B. So với năm 2020, lợi nhuận của các chi nhánh thu được trong năm 2021 đều tăng trên 20% C. Chi nhánh B có tỉ lệ lợi nhuận tăng thấp nhất D. Lợi nhuận thu được của các chi nhánh trong năm 2020 đều cao hơn năm 2021. + Một người quan sát đỉnh của một ngọn núi nhân tạo từ hai vị trí khác nhau của tòa nhà. Lần đầu tiên người đó quan sát đỉnh núi từ tầng trệt với phương nhìn tạo với phương nằm ngang 0 35 và lần thứ hai người này quan sát tại sân thượng của cùng tòa nhà đó với phương nằm ngang 0 15 (như hình vẽ). Tính chiều cao ngọn núi biết rằng tòa nhà cao 60 m. + Trong một cuộc thi gói bánh vào dịp năm mới, mỗi đội chơi được sử dụng tối đa 6 kg nếp, 10 kg đậu để gói bánh tét và bánh chưng. Để gói một cái bánh tét cần 1 kg nếp và 1 kg đậu; để gói một cái bánh chưng cần 1 kg nếp và 2 kg đậu xanh. Mỗi cái bánh tét nhận được 10 điểm thưởng, mỗi cái bánh chưng nhận được 8 điểm thưởng. Hỏi cần phải gói mấy cái bánh mỗi loại để được nhiều điểm thưởng nhất?

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 10 (chuyên Toán) năm 2020 - 2021 trường chuyên Nguyễn Huệ - Hà Nội
Đề thi HK1 Toán 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội : + Cho tam giác ABC thỏa mãn: cos2A + cos2B + cos2C + 1 = 0. Chứng minh rằng tam giác ABC là tam giác vuông. + Cho p là một số nguyên tố lẻ. Chứng minh rằng A = 7^p – 5^p – 2 luôn là bội số của 6p. + Cho O, I lần lượt là tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC. Đường thẳng vuông góc với AI tại A cắt BI, CI tại K, M. Gọi B’, C’ lần lượt là giao điểm của BI với AC và CI với AB. Đường thẳng B’C’ cắt đường tròn (O) tại N, E. 1. Chứng minh rằng KM, NE, BC đồng quy. 2. Chứng minh rằng M, N, E, K đồng viên.
Đề thi HK1 Toán 10 chuyên năm 2020 - 2021 trường chuyên Lê Hồng Phong - Nam Định
Đề thi HK1 Toán 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi HK1 Toán 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O), có các đường cao AH, BE, CF. Tiếp tuyến tại B và C của (O) cắt nhau tại T. Gọi D là giao điểm của AT và BC, S là giao điểm của EF và BC, G là hình chiếu vuông góc của T trên AO, J là giao điểm thứ hai của TH và đường tròn ngoại tiếp tam giác OBC. Chứng minh: a) Các điểm S, J, M, T cùng thuộc một đường tròn, với M là trung điểm của BC. b) Các đường thẳng SO, TH, DG đồng quy tại một điểm. + Tìm số dư khi chia 11^12 + 12^13 + 13^14 cho 7. + Cho p là số nguyên tố và a, b là các số nguyên dương lẻ thỏa mãn a – b chia hết cho p – 1 và a + b chia hết cho p. Chứng minh a^b + b^a chia hết cho p.
Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Nguyễn Thị Minh Khai - TP HCM
Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-5;0), B(1;0), C(2;3). a) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC. b) Tìm tọa độ điểm M thuộc tia Oy sao cho |2MA – MB| nhỏ nhất. + Tìm giá trị lớn nhất của hàm số y = f(x) = x(3 – 2x) khi 0 =< x =< 3/2. + Giải các phương trình và hệ phương trình sau.
Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường chuyên Lê Hồng Phong - TP HCM
Thứ Tư ngày 16 tháng 12 năm 2020, trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 10 năm học 2020 – 2021. Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC biết A(2;1), B(1;2), C(4;3). a) Chứng minh ABC là tam giác vuông cân. b) Tìm giao điểm của đường thẳng AB và trục tung. c) Tìm tọa độ điểm D sao cho ABCD là hình thang có AD // BC và diện tích ABCD bằng 15. + Cho hình vuông ABCD cạnh a, gọi I là giao điểm của AC và BD. M là điểm thỏa MA2 + MB2 + MC2 + MD2 = 12a2, tính MI. + Cho phương trình (2x^2 – 8x + m)/(x^2 – 4x + 3) = 1. Tìm tất cả các giá trị của tham số m để phương trình có nghiệm.