Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 10 môn Toán năm 2021 2022 trường chuyên Lương Thế Vinh Đồng Nai

Nội dung Đề HSG lớp 10 môn Toán năm 2021 2022 trường chuyên Lương Thế Vinh Đồng Nai Bản PDF - Nội dung bài viết Đề HSG Toán lớp 10 trường chuyên Lương Thế Vinh Đồng Nai Đề HSG Toán lớp 10 trường chuyên Lương Thế Vinh Đồng Nai Chào quý thầy cô và các em học sinh lớp 10! Đây là đề thi chọn học sinh giỏi lớp 10 môn Toán chuyên năm học 2021 – 2022 của trường THPT chuyên Lương Thế Vinh, tỉnh Đồng Nai. Kỳ thi sẽ diễn ra vào ngày 15 tháng 04 năm 2022. Dưới đây là một số câu hỏi thú vị từ đề thi: Biết rằng phương trình \(x^3 - ax^2 + bx - c = 0\) có 3 nghiệm nguyên phân biệt, chứng minh rằng phương trình \(x^2 - 2ax + 3b = 0\) cũng có 2 nghiệm phân biệt là m và n. Cho abc là một số nguyên tố có ba chữ số. Chứng minh phương trình \(ax^2 + bx + c = 0\) không có nghiệm hữu tỷ. Một nhóm học sinh gồm sáu em, trong đó có hai em lớp A, hai em lớp B và hai em lớp C. Mỗi ngày một lần, các em xếp thành một hàng dọc sao cho chỉ có đúng một cặp hai em cùng lớp đứng cạnh nhau. Biết rằng không có hai ngày có cách xếp giống nhau, vậy các em có thể xếp được nhiều nhất bao nhiêu ngày? Hãy cùng nhau tham gia vào kỳ thi đầy thách thức và sáng tạo. Chúc các em đạt kết quả cao nhất!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 - 2018 trường THPT Thanh Miện - Hải Dương
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 – 2018 trường THPT Thanh Miện – Hải Dương gồm 5 bài toán tự luận,thời gian làm bài 180 phút, đề thi HSG có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD, điểm M (-2; 0) là trung điểm của cạnh AB, điểm H(1; -1) là hình chiếu của B trên AD và điểm G(7/3; 3) là trọng tâm tam giác BCD. Đường thẳng HM cắt BC tại E, đường thẳng HG cắt BC tại F. Tìm tọa độ các điểm E, F và B. [ads] + Cho tam giác ABC có trọng tâm là G. Hai điểm D và E được xác định bởi các hệ thức vectơ vtAD = 2.vtAB; vtAE = 2/5.vtAC. Chứng minh rằng: D, E, G thẳng hàng. + Gọi H là trực tâm tam giác ABC, M là trung điểm của BC. Chứng minh rằng vtMH.vtMA = 1/4.BC^2.