Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Thanh Hóa

Thứ Ba ngày 06 tháng 10 năm 2020, phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 năm học 2020 – 2021. Đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thanh Hóa : + Tìm cặp nghiệm nguyên thỏa mãn: x^2022 = y^2022 – y^1348 – y^674 + 2. + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh tam giác AEF đồng dạng với tam giác ABC. 2) Chứng minh H là giao điểm ba đường phân giác của tam giác DEF. 3) Đặt BC = a; AC = b, AB = c; S là diện tích tam giác ABC. Chứng minh rằng: a^2 + b^2 + c^2 >= 4√3S. + Cho các số thực dương thỏa mãn abc + a + c = b. Tìm giá trị lớn nhất của biểu thức P = 2/(a^2 + 1) – 2/(b^2 + 1) + 3/(c^2 + 1).

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Thanh Sơn - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ; đề thi gồm 03 trang với 16 câu trắc nghiệm (08 điểm) và 04 câu tự luận (12 điểm), thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và biểu điểm. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Thanh Sơn – Phú Thọ : + Cho nửa đường tròn tâm O đường kính BC và điểm A nằm trên nửa đường tròn (A khác B, C). Hạ AH vuông góc với BC (H thuộc BC). Gọi I và K lần lượt đối xứng với H qua AB và AC. Diện tích tứ giác BIKC lớn nhất bằng? + Một người mang trứng gà ra chợ bán. Tổng số trứng gà bán ra được tính như sau: Ngày thứ nhất bán được 8 trứng và 1 8 số trứng còn lại. Ngày thứ hai bán được 16 trứng và 1 8 số trứng còn lại. Ngày thứ ba bán được 24 trứng và 1 8 số trứng còn lại. Cứ như vậy cho đến ngày cuối cùng thì bán hết trứng. Biết số trứng gà bán được mỗi ngày đều bằng nhau. Số ngày người đó bán hết số trứng gà là? + Cho điểm C thuộc nửa đường tròn đường kính AB, H là hình chiếu của C trên AB. Các điểm D và E thuộc nửa đường tròn sao cho HC là tia phân giác của góc DHE. Hệ thức nào sau đây đúng?
Đề thi HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Thanh Ba - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Ba, tỉnh Phú Thọ; đề thi gồm 02 trang với 16 câu trắc nghiệm (08 điểm) và 04 câu tự luận (12 điểm), thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và biểu điểm. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Thanh Ba – Phú Thọ : + Bạn Trang có tầm mắt cao 1,52m đứng gần một tòa nhà cao tầng thì thấy đỉnh của tòa nhà với góc nhìn so với phương nằm ngang là 30°. Trang đi về phía tòa nhà 50m thì nhìn thấy đỉnh của tòa nhà với góc nhìn so với phương nằm ngang là 60°. Hỏi chiều cao của tòa nhà là bao nhiêu? (làm tròn kết quả đến chữ số thập phân thứ hai). + Cho hình hộp chữ nhật có diện tích xung quanh 2 80 dm chiều cao bằng 8 dm. Để hình hộp chữ nhật so thể tích lớn nhất thì các kích thước của đáy bể là? + Một lọ thuốc hình trụ được đặt khít trong một hộp giấy hình chữ nhật. Hỏi thể tích của hộp thuốc bằng bao nhiêu phần trăm thể tích của hộp giấy? (lấy π ≈ 3,14).
Đề thi HSG huyện Toán 9 năm 2023 - 2024 phòng GDĐT Đô Lương - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Đô Lương, tỉnh Nghệ An. Trích dẫn Đề thi HSG huyện Toán 9 năm 2023 – 2024 phòng GD&ĐT Đô Lương – Nghệ An : + Cho T = 4n + 1 với n là số tự nhiên lẻ lớn hơn 1. Chứng minh giá trị của T là hợp số. + Cho tam giác ABC vuông tại A đường cao AH. Gọi N là trung điểm của đoạn thẳng BC. Từ N vẽ đường thẳng song song với AB cắt AC tại E. Từ C vẽ đường thẳng song song với AH cắt đường thẳng NE tại K. BK cắt AH tại M. a) Chứng minh BC2 = 4.NE.NK và M là trung điểm của đoạn thẳng AH. b) Các đường phân giác của tam giác AHE cắt nhau tại I, các đường phân giác của tam giác CHE cắt nhau tại Q. đường thẳng IQ cắt các đường thẳng AH và CH thứ tự tại P và F. Chứng minh AH.HC = 2.HP.HF.
Đề thi Olympic Toán 9 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic các trường THCS hướng đến kỳ thi học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 05 tháng 11 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 9 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho A là số nguyên dương và phương trình nghiệm nguyên ax by c với các hệ số nguyên a b c thỏa mãn a b nguyên tố cùng nhau a b A. Chứng minh số nghiệm nguyên x y thỏa mãn điều kiện x A y A của phương trình đã cho không vượt quá 3A b. + Gọi O là giao điểm ba đường phân giác trong của tam giác ABC. Đường thẳng qua O và vuông góc với CO cắt CA tại M cắt CB tại N. Chứng minh rằng: a) Tam giác AOM đồng dạng với tam giác OBN. b) 2 1 AM BN OC AC BC AC BC. + Cạnh BC của tam giác ABC tiếp xúc với đường tròn nội tiếp O của tam giác đó tại điểm D. Chứng minh rằng tâm O của đường tròn này nằm trên đường thẳng đi qua trung điểm của các đoạn thẳng BC và AD.