Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023 2024 phòng GD ĐT Tứ Kỳ Hải Dương

Nội dung Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023 2024 phòng GD ĐT Tứ Kỳ Hải Dương Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023-2024 phòng GD ĐT Tứ Kỳ Hải Dương Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023-2024 phòng GD ĐT Tứ Kỳ Hải Dương Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2023-2024 tại phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương. Đề thi bao gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút. Trích dẫn từ Đề học sinh giỏi Toán lớp 9 vòng 1 năm 2023-2024 phòng GD&ĐT Tứ Kỳ - Hải Dương: Cho các số thực a, b không âm thỏa mãn điều kiện 2a + 2b + ab = 4. Hãy tính giá trị của biểu thức P. Cho a, b, c là các số nguyên thỏa mãn a + b + c = c3 - 7c. Chứng minh rằng: a3 + b3 + c3 chia hết cho 6. Cho tam giác ABC vuông tại A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Cần chứng minh các phát biểu sau: a) AE.EB + AF.FC = AH2 và BC.cos³B = BE. b) BE.CH + CF.BH = AH.BC. c) Gọi M là trung điểm của BC, từ A kẻ đường thẳng d vuông góc với AM tại A. Từ B kẻ tia Bx vuông góc với BC cắt d tại P. Chứng minh PC đi qua trung điểm của AH. Đây là một bài thi đầy thách thức, đòi hỏi sự sáng tạo, logic và kiến thức vững chắc từ các em học sinh lớp 9. Hy vọng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức Toán của mình. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT An Giang : + Một số nguyên có ba chữ số có tính chất: nếu ta bỏ chữ số đầu tiên của số đó ta được một số chính phương, nếu ta bỏ đi chữ số cuối cùng ta vẫn được một số chính phương. Tìm tất cả các số có ba chữ số có tính chất như vậy. + Cho đường tròn (O) tâm O đường kính AB. Kéo dài AB về phía B lấy một điểm S tùy ý, kẻ cát tuyến SMC với đường tròn (O). Từ C vẽ dây CD vuông góc với AB; AM và BC cắt nhau tại N, AB và DM cắt nhau tại P. a) Chứng minh rằng NP song song CD. b) Chứng tỏ rằng OP.OS = OA2. + Một quyển sách có 30 bài học, mỗi bài học đều được bắt đầu ở một trang mới, các bài học có độ dài là 1, 2, 3, …, 30 trang (không nhất thiết sắp theo thứ tự). Hỏi số lượng bài học lớn nhất bắt đầu từ trang đánh số lẻ của quyển sách là bao nhiêu?
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; kỳ thi được diễn ra vào thứ Ba ngày 11 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Ninh Thuận : + Tìm số tự nhiên nhỏ nhất thỏa cả hai tính chất sau: a) Chữ số cuối cùng bằng 6. b) Nếu bỏ chữ số cuối cùng ấy và thêm chữ số 6 vào trước các chữ số còn lại thì số mới nhận được gấp 4 lần số ban đầu. + Chứng minh rằng: a2 + b2 + c2 > ab + bc + ac với mọi a, b, c. + Cho tam giác ABC đều cạnh a với đường cao AH. M là một điểm bất kỳ trên cạnh BC. Vẽ ME vuông góc AB, MF vuông góc AC. Gọi O là trung điểm của AM. 1) Chứng minh rằng 5 điểm A, E, H, M, F cùng nằm trên một đường tròn. Tứ giác OEHF là hình gì? 2) Tìm giá trị nhỏ nhất của diện tích tứ giác OEHF theo a khi M di động trên cạnh BC.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Giang; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Hà Giang : + Cho Parabol (P): y = x2 và đường thẳng d: y = 2x – m. Tìm m để đường thẳng d cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn x13 + x23 = 5. + Cho x, y, z là ba số thực đương thỏa mãn: x + y + z = 23 và xy + yz + zx = 4. Chứng minh rằng? + Cho tam giác ABC vuông tại A, AB < AC và M là trung điểm cạnh BC. Gọi P là một điểm bất kì trên đoạn AM (P khác A và M). K, L lần lượt là các điểm thuộc tia BP, CP sao cho AKB = ABC và ALC = ACB. Đường tròn (I) ngoại tiếp tam giác BPL cắt đường thẳng AB tại điểm F khác B. Đường tròn (J) ngoại tiếp tam giác CPK cắt đường thẳng AC tại điểm E khác C. a) Chứng minh rằng BKA và BAP đồng dạng. b) Chứng minh rằng IJ song song với EF.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho tam giác nhọn ABC nội tiếp đường tròn (O) và một điểm P bất kì nằm trong tam giác (P khác O). Đường thẳng AP cắt đường tròn (O)tại điểm thứ hai là D, dựng các đường kính DE, AF của đường tròn (O). Gọi G, I lần lượt là các giao điểm thứ hai của đường thẳng EP, FP với đường tròn (O), K là giao điểm của AI và DG. Gọi H là hình chiếu vuông góc của K trên OP, đường thẳng OP cắt EF tại M. 1. Chứng minh HO là phân giác của góc IHD. 2. Chứng minh KD vuông góc DM. + Cho tam giác ABC có các đường phân giác trong AD, BE, CF cắt nhau tại I. Chứng minh rằng? + Cho đa giác đều có 2n đỉnh (n thuộc N và n ≥ 3). Có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn 100 độ.