Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lương Tài Bắc Ninh

Nội dung Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lương Tài Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện môn Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh Đề thi HSG cấp huyện môn Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh Đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022-2023 do phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh tổ chức. Kỳ thi được diễn ra vào thứ Ba ngày 08 tháng 03 năm 2023. Đề thi bao gồm các câu hỏi có đáp án, lời giải chi tiết và thang điểm. Bản đề HSG cấp huyện Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh gồm các phần sau: Cho đa thức \(2f(x) = ax^2 + bx + c\) với \(a\), \(b\), \(c\) là các số hữu tỉ. Biết rằng \(f(0)\), \(f(1)\), \(f(2)\) có giá trị nguyên. Chứng minh rằng \(2a + b\) có giá trị nguyên. Cho \(a\), \(b\) là hai số nguyên phân biệt lớn hơn 1 thỏa mãn \(2a^2b\) là lũy thừa của một số nguyên tố khác 13 và \(2b^2a\) chia hết cho \(2a^2b\). Chứng minh \(2^3a\) là số chính phương. Cho tam giác ABC có \(B = 2C\); trên tia đối của tia BA lấy điểm D sao cho BD = BC. Qua A kẻ đường thẳng vuông góc với CD cắt BC và CD lần lượt tại M và N. Đường vuông góc với BC tại C cắt AM tại K. Chứng minh rằng: a) Tam giác ABM là tam giác cân và ABC = 2AKC b) \(MA \cdot KN = MN \cdot KA\) c) Tính độ dài ba cạnh của tam giác ABC biết độ dài ba cạnh là ba số tự nhiên liên tiếp. File WORD (dành cho quý thầy, cô) chứa toàn bộ nội dung của đề thi. Hãy chuẩn bị kỹ lưỡng và tự tin đối mặt với thách thức để chinh phục bài thi HSG cấp huyện môn Toán lớp 8!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2017 - 2018 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương : + Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. Chứng minh: a) Tứ giác BEDF là hình bình hành. b) CH.CD = CB.CK. c) AB.AH + AD.AK = AC2. + Cho biểu thức M. a) Tìm điều kiện của x để M xác định và rút gọn M. b) Tìm tất các giá trị của x để M > 0. + Xác định một đa thức bậc ba f(x) không có hạng tử tự do sao cho: f(x) – f(x – 1) = x2.
Đề HSG Toán 8 cấp thành phố năm 2017 - 2018 phòng GDĐT TP Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề HSG Toán 8 cấp thành phố năm 2017 – 2018 phòng GD&ĐT TP Bắc Giang; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG Toán 8 cấp thành phố năm 2017 – 2018 phòng GD&ĐT TP Bắc Giang : + Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Trên cạnh AB lấy M (0 < MB < MA) và trên cạnh BC lấy N sao cho 0 < MON < 90. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE. 1. Chứng minh tam giác MON vuông cân. 2. Chứng minh MN song song với BE. 3. Chứng minh CK vuông góc với BE. + Cho x, y là số hữu tỷ khác 1 thỏa mãn. Chứng minh M = x2 + y2 – xy là bình phương của một số hữu tỷ. + Tìm tất cả các cặp số nguyên (x; y) thoả mãn.
Đề HSG Toán 8 năm 2017 - 2018 phòng GDĐT Duy Xuyên - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Duy Xuyên – Quảng Nam; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Duy Xuyên – Quảng Nam : + Một vật thể chuyển động từ A đến B theo cách sau: đi được 4 m thì dừng lại 1 giây, rồi đi tiếp 8m dừng lại 2 giây, rồi đi tiếp 12m dừng lại 3 giây, … Cứ như vậy đi từ A đến B kể cả dừng hết tất cả 155 giây. Biết rằng khi đi vật thể luôn có vận tốc 2 m/giây. Tính khoảng cách từ A đến B. + Cho tam giác ABC vuông tại A, phân giác BD. Gọi P, Q, R lần lượt là trung điểm của BD, BC, DC. a) Chứng minh APQR là hình thang cân. b) Biết AB = 6cm, AC = 8cm Tính độ dài của AR. + Cho hình bình hành ABCD. Một đường thẳng qua B cắt cạnh CD tại M, cắt đường chéo AC tại N và cắt đường thẳng AD tại K. Chứng minh.
Đề giao lưu học sinh giỏi Toán 8 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên