Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang

Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang là một bài thi khá thú vị và đầy thách thức. Được chia thành 5 bài toán tự luận, với lời giải chi tiết của thầy Nguyễn Chí Dũng, đề thi đòi hỏi sự tư duy logic và kiến thức chắc chắn của thí sinh. Trích một số bài toán trong đề: + Bài toán đầu tiên yêu cầu chứng minh tứ giác AHEC nội tiếp, chứng minh hai góc ABD và DBC bằng nhau, chứng minh tam giác ABE cân và chứng minh AKEF là hình thoi. + Bài toán thứ hai liên quan đến ngọn Hải đăng Kê Gà ở tỉnh Bình Thuận, hỏi về khoảng cách mà một người quan sát có thể nhìn thấy trên mặt biển và cách xa nhìn thấy ngọn đèn từ tàu. Đề thi này không chỉ đánh giá kiến thức của thí sinh mà còn khuyến khích sự sáng tạo, tư duy logic và khả năng giải quyết vấn đề của họ. Các bài toán đều rất thú vị và đòi hỏi sự chú ý, cẩn thận trong việc giải quyết từng bước. Với đề thi này, thí sinh cần phải tự tin, kiên nhẫn và sẵn sàng đối mặt với thách thức để có thể hoàn thành tốt. Chính vì vậy, đề thi tuyển sinh môn Toán sở GD và ĐT An Giang năm học 2017-2018 là một bài kiểm tra thực sự ý nghĩa và hữu ích đối với thí sinh.

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 chuyên môn Toán năm 2020 2021 trường ĐHKH Huế (vòng 2)
Nội dung Đề thi vào 10 chuyên môn Toán năm 2020 2021 trường ĐHKH Huế (vòng 2) Bản PDF - Nội dung bài viết Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 2) Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 2) Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 2) bao gồm 02 trang với 06 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Trích dẫn đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 2): Cho A là tập gồm 17 số tự nhiên mà các chữ số của mỗi số được lấy từ tập {0 ; 1 ; 2 ; 3 ; 4}. Chứng minh rằng có thể chọn được 5 số từ tập A sao cho tổng của 5 số này chia hết cho 5. Một hình chữ nhật bị các đường thẳng chia thành các đa giác. Trong đó có 3 tam giác và 2 tứ giác có diện tích lần lượt là 5, 6, 10, x và 54. Tìm giá trị của x. Cho P là parabol có phương trình y = x^2, A là điểm có tọa độ (3; 5) và m là tham số dương. Viết phương trình đường thẳng qua A và có hệ số góc m. Tìm giá trị nhỏ nhất của m để đường thẳng cắt P. Giả sử đường thẳng cắt P tại 2 điểm có hoành độ x1 và x2. Tìm mối liên hệ giữa x1 và x2.
Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Quốc học Huế
Nội dung Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Quốc học Huế Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế có tổng cộng 5 bài toán dạng tự luận, được biên soạn trên 2 trang giấy. Thời gian làm bài thi là 150 phút, và kỳ thi được tổ chức vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn một số câu hỏi từ đề thi: + Trên mặt phẳng tọa độ Oxy, cho đường thẳng \( (d) : y = mx+ 4 \) (với \( m \neq 0 \)) và parabol \( (P) : y = 2x^2 \). Gọi A, B là các điểm giao của \( (d) \) và \( (P) \); A0 và B0 lần lượt là hình chiếu vuông góc của A và B lên trục hoành. Tìm giá trị của \( m \) để diện tích tứ giác ABB0A0 bằng 15 cm2. + Chứng minh phương trình \( x^2 - (m^2 - 1) x + m(m - 1)^2 = 0 \) luôn có nghiệm với mọi giá trị của \( m \). Tìm giá trị của \( m \) sao cho nghiệm lớn nhất của phương trình đạt giá trị nhỏ nhất. + Cho hai đường tròn \( (O) \) và \( (O0) \) cắt nhau tại hai điểm A và B, với điểm O nằm ngoài đường tròn \( (O0) \). Từ một điểm M trên tia đối của tia AB, vẽ các tiếp tuyến MC, MD với đường tròn \( (O) \) (C, D là các tiếp điểm và D nằm trong đường tròn \( (O0) \)). Hai đường thẳng AC và AD cắt đường tròn \( (O0) \) lần lượt tại E và F, với E và F không trùng với A. Hai đường thẳng CD và EF cắt nhau tại I. Câu hỏi được chia thành 3 phần: Chứng minh tứ giác BCEI là tứ giác nội tiếp, và \( EI \cdot BD = BI \cdot AD \). Chứng minh rằng I là trung điểm của đoạn thẳng EF. Chứng minh rằng khi M thay đổi trên tia đối của tia AB, đường thẳng CD luôn đi qua một điểm cố định. Đề thi này đòi hỏi sự logic, khả năng suy luận và phân tích của thí sinh để giải quyết các bài toán phức tạp một cách chính xác và hiệu quả.
Tuyển tập đề thi vào môn Toán chuyên và không chuyên
Nội dung Tuyển tập đề thi vào môn Toán chuyên và không chuyên Bản PDF - Nội dung bài viết Tuyển tập đề thi vào môn Toán chuyên và không chuyên Tuyển tập đề thi vào môn Toán chuyên và không chuyên Bộ tài liệu này bao gồm tổng cộng 328 trang, chứa đựng nhiều đề thi vào lớp 10 môn Toán chuyên và không chuyên. Được biên soạn nhằm giúp học sinh lớp 9 rèn luyện và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán sắp tới. Trong tài liệu này, học sinh sẽ được tiếp cận với một loạt các đề thi tuyển sinh vào lớp 10 từ các tỉnh thành khác nhau trên cả nước. Từ các đề thi của An Giang, Bắc Giang, Bắc Kạn, cho đến các đề thi của Bình Dương, Cần Thơ, Đà Nẵng và nhiều địa phương khác. Với sự đa dạng về nội dung và cấu trúc, tuyển tập này sẽ giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải các dạng bài tập phong phú, từ đó nâng cao khả năng làm bài và tự tin hơn khi bước vào kỳ thi quan trọng. Đây chính là tài liệu học tập hữu ích, giúp học sinh tự học hiệu quả và nắm vững kiến thức Toán cần thiết để vượt qua thử thách trong kỳ thi tuyển sinh sắp tới. Một công cụ không thể thiếu cho sự chuẩn bị hoàn hảo của các em học sinh!
Đề thi thử Toán vào năm 2021 2022 trường THCS Minh Phú Phú Thọ
Nội dung Đề thi thử Toán vào năm 2021 2022 trường THCS Minh Phú Phú Thọ Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2021-2022 trường THCS Minh Phú Phú Thọ Đề thi thử Toán vào năm 2021-2022 trường THCS Minh Phú Phú Thọ Đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Minh Phú – Phú Thọ bao gồm 02 trang với tổng cộng 14 câu hỏi, trong đó có 10 câu trắc nghiệm và 04 câu tự luận. Thời gian làm bài là 120 phút. Đề thi có sẵn đáp án cho các câu trắc nghiệm và lời giải chi tiết cho các câu tự luận. Một trong những câu hỏi trong đề thi là: + Cho đường tròn có tâm O và đường kính AB độ dài R = 2. Gọi C là trung điểm của OA, qua C kẻ đường thẳng vuông góc với OA và cắt đường tròn O tại hai điểm phân biệt M và N. Trên cung nhỏ BM chúng ta lấy điểm K (K khác B và M). Gọi H là giao điểm của đoạn thẳng AK và đoạn thẳng MN. a) Chứng minh rằng tứ giác BCHK nội tiếp trong đường tròn. b) Chứng minh rằng 2AK = AH + R. c) Trên tia KN chúng ta lấy điểm I sao cho KI = KM. Chứng minh rằng NI // BK. Đề thi cũng bao gồm các phần khác với các câu hỏi phức tạp, giúp học sinh ôn tập và nắm vững kiến thức trước kỳ thi chính thức.