Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THPT Nguyễn Chí Thanh TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THPT Nguyễn Chí Thanh TP HCM Bản PDF Sau khi học sinh khối lớp 12 hoàn thành chương trình Toán lớp 12, trường THPT Nguyễn Chí Thanh, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra chất lượng học kì 2 môn Toán lớp 12 năm học 2018 – 2019, kỳ thi nhằm tổng kết lại các kiến thức Toán lớp 12 học sinh đã học trong thời gian vừa qua, điểm số trong kỳ thi này cùng các điểm số các em đã đạt được trước đó sẽ là cơ sở để giáo viên xếp loại học lực Toán lớp 12. Đề thi HK2 Toán lớp 12 năm 2018 – 2019 trường THPT Nguyễn Chí Thanh – TP HCM được biên soạn theo dạng đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, chiếm 8 điểm, phần tự luận gồm 4 câu, chiếm 2 điểm, học sinh làm bài thi học kỳ trong 90 phút, đề thi có đáp án trắc nghiệm mã đề 132, 209, 357, 485 và lời giải phần tự luận. [ads] Trích dẫn đề thi HK2 Toán lớp 12 năm 2018 – 2019 trường THPT Nguyễn Chí Thanh – TP HCM : + Cho ba điểm A(1;0;0), B(0;1;0), C(0;0;1) và mặt cầu (S): x^2 + y^2 + z^2 – x – y – z = 0. Điểm D thuộc mặt cầu (S) sao cho thể tích của tứ diện ABCD lớn nhất. Khi đó, khoảng cách từ điểm D đến mặt phẳng (ABC) bằng? + Một ô tô đang chạy với vận tốc 20 m/s thì người lái xe phát hiện có hàng rào chắn ngang đường ở phía trước cách xe 45m (tính từ đầu xe tới hàng rào) nên người lái đạp phanh. Từ thời điểm đó, xe chuyển động chậm dần đều với vận tốc v(t) = – 5t + 20 (m/s), t là thời gian được tính từ lúc người lái đạp phanh. Hỏi khi xe dừng hẳn, khoảng cách từ xe đến hàng rào là bao nhiêu mét? + Học sinh giải các câu: câu 5; câu 34; câu 36; câu 37 bằng hình thức tự luận.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK2 môn Toán 12 trường THPT Trần Quang Khải - TP. HCM năm học 2015 - 2016
Đề thi HK2 môn Toán 12 trường THPT Trần Quang Khải – TP. HCM năm học 2015 – 2016 có đáp án và thang điểm chi tiết. Đề thi gồm 7 câu hỏi: + Câu 1: Khảo sát hàm phân thức hữu tỉ + Câu 2: Phương trình mũ và logarit + Câu 3: Số phức + Câu 4: Tích phân + Câu 5: Tìm tọa độ điểm và viết phương trình đường thẳng trong không gian + Câu 6: Tính thể tích và khoảng cách trong bài toán hình học không gian + Câu 7: Giải hệ phương trình. Đây là một câu hỏi khó nhằm phân loại học sinh, với hệ phương trình này, tác giả muốn nhắm đến phương pháp hàm số Nhìn chung, đây là 1 đề thi không khó, học sinh khá có thể đạt điểm 9.
Đề thi HK2 môn Toán 12 trường Sơn Động - Bắc Giang năm học 2015 - 2016
Đề thi HK2 môn Toán 12 trường Sơn Động – Bắc Giang năm học 2015 – 2016 có đáp án và thang điểm chi tiết. Đề thi gồm 6 câu hỏi, không chỉ giới hạn trong phần kiến thức HK2 mà toàn bộ chương trình Toán 12 nhằm chuẩn bị cho kì thi Quốc gia 2016 sắp tới. Nhìn chung đề không khó, có thể dễ dàng được 8 – 9 điểm, câu hệ phương trình logarit số 6 là câu dành cho học sinh khá giỏi với chỉ 1 điểm.
Đề thi HK2 môn Toán 12 trường Lương Ngọc Quyến - Thái Nguyên năm học 2015 - 2016
Đề thi HK2 môn Toán 12 trường Lương Ngọc Quyến – Thái Nguyên năm học 2015 – 2016 có đáp án và thang điểm chi tiết. Đề thi gồm 5 câu hỏi với 8 câu hỏi nhỏ. Đề thi được đánh giá là không dễ và khá dài. Sự xuất hiện của câu hỏi về GTNN – GTLN của một biểu thức 3 biến có thể xem là điểm nhấn của đề thi này. Đề thi cũng nhằm kiểm tra kiến thức của học sinh trong kì thi Quốc gia 2016 sắp tới.
Đề thi thử cuối học kì 2 (HK2) lớp 12 môn Toán năm 2022 2023 trường THPT Đông Hà Quảng Trị
Nội dung Đề thi thử cuối học kì 2 (HK2) lớp 12 môn Toán năm 2022 2023 trường THPT Đông Hà Quảng Trị Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử kiểm tra cuối học kỳ 2 môn Toán lớp 12 năm học 2022 – 2023 trường THPT Đông Hà, tỉnh Quảng Trị; đề thi hình thức trắc nghiệm, gồm 50 câu hỏi và bài toán, thời gian 90 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi thử cuối kỳ 2 Toán lớp 12 năm 2022 – 2023 trường THPT Đông Hà – Quảng Trị : + Trong hệ trục tọa độ Oxy, cho parabol 2 Pyx và hai đường thẳng y a y b (0 a b) (hình vẽ). Gọi 1 S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y a (phần tô đen); (S2) là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y b (phần gạch chéo). Với điều kiện nào sau đây của a và b thì 1 2 S S? + Trong không gian với hệ tọa độ cho mặt phẳng đi qua điểm cắt các tia tại (không trùng với gốc tọa độ). Thể tích tứ diện đạt giá trị nhỏ nhất là bao nhiêu? + Trong không gian Oxyz, cho đường thẳng 1 111 xy z ∆ và hai điểm A(1;2;-5), B(−1;0;2). Biết điểm M thuộc ∆ sao cho biểu thức T MA MB đạt giá trị lớn nhất là Tmax. Khi đó Tmax bằng bao nhiêu? File WORD (dành cho quý thầy, cô):