Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 10 môn Toán lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc

Nội dung Đề khảo sát lớp 10 môn Toán lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc Bản PDF Tuần qua, trường THPT Lê Xoay, tỉnh Vĩnh Phúc đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 lần 2 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề khảo sát Toán lớp 10 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc có mã đề 125, đề gồm 06 trang được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, kỳ thi nhằm đánh giá chất lượng môn Toán thường xuyên đối với học sinh khối 10 theo từng giai đoạn để thúc đẩy nâng cao chất lượng học tập. Trích dẫn đề khảo sát Toán lớp 10 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc : + Cho tam giác ABC không vuông với độ dài các đường cao kẻ từ đỉnh B, C lần lượt là hb, hc, độ dài đường trung tuyến kẻ từ đỉnh A là ma, biết hb = 8, hc = 6, ma = 5. Tính cos A. [ads] + Cho ba số dương a, b, c có tổng bằng 1. Giá trị lớn nhất của biểu thức P = a + √ab + (abc)^1/3 là? + Cho tam giác ABC có BC = a, CA = b, AB = c. Mệnh đề nào sau đây là đúng? A. Nếu b^2 + c^2 – a^2 < 0 thì góc A nhọn. B. Nếu b^2 + c^2 – a^2 < 0 thì góc A vuông. C. Nếu b^2 + c^2 – a^2 > 0 thì góc A tù. D. Nếu b^2 + c^2 – a^2 > 0 thì góc A nhọn. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề sát hạch Toán 10 lần 3 năm 2019 - 2020 trường THPT Đoàn Thượng - Hải Dương
Đề sát hạch Toán 10 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương mã đề 132, đề được biên soạn theo dạng đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề sát hạch Toán 10 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương : + Cho tam giác có số đo ba cạnh là 3; 4; 5. Khẳng định nào đúng? A. Tam giác đều. B. Tam giác vuông. C. Tam giác cân. D. Tam giác tù. [ads] + Cho biểu thức f(x) = ax^2 + bx + c (a ≠ 0) và ∆ = b^2 – 4ac. Chọn khẳng định đúng? A. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ∈ R. B. Khi ∆ = 0 thì f(x) trái dấu với hệ số a với mọi x ≠ −b/2a. C. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ≠ −b/2a. D. Khi ∆ > 0 thì f(x) luôn trái dấu hệ số a với mọi x ∈ R. + Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình mx + m – (m + 2)x = m^2 – 2x có tập nghiệm là R. Tính tổng tất cả các phần tử của S.
Đề kiểm tra chất lượng Toán 10 lần 2 năm 2019 - 2020 trường THPT Lý Thái Tổ - Bắc Ninh
Thứ Bảy ngày 30 tháng 06 năm 2020, trường THPT Lý Thái Tổ, thị xã Từ Sơn, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán đối với học sinh lớp 10 lần thứ hai năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 10 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra chất lượng Toán 10 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có điểm M nằm trên cạnh CD sao cho DC = 3DM và điểm N đối xứng với điểm C qua điểm B. Biết đỉnh B(-2;2), điểm A nằm trên đường thẳng delta: x + y – 3 = 0 và đường thẳng MN có phương trình là 3x – 4y + 4 = 0. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: x – y – 1 = 0 và d2: 7x – y – 13 = 0. a. Tính cosin của góc tạo bởi hai đường thẳng d1 và d2. b. Viết phương trình tham số của đường thẳng delta đi qua gốc tọa độ O và song song với d2. c. Viết phương trình đường tròn (C) có tâm I nằm trên đường thẳng d1, tiếp xúc với d2 và có bán kính R = 3√2. + Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hỏi có tất cả bao nhiêu giá trị nguyên dương của tham số m để bất phương trình f(-x^2 + 4x) > m có nghiệm thuộc khoảng [0;3]?
Đề chọn lớp chất lượng cao Toán 10 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Nhằm tuyển chọn những em học sinh lớp 10 giỏi môn Toán vào học tại các lớp chất lượng cao trong năm học tới, vừa qua, trường Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn lớp chất lượng cao Toán 10 năm học 2020 – 2021. Đề chọn lớp chất lượng cao Toán 10 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm có 02 trang với 15 câu trắc nghiệm và 06 câu tự luận, phần trắc nghiệm chiếm 03 điểm, phần tự luận chiếm 07 điểm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề chọn lớp chất lượng cao Toán 10 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Trên mặt phẳng Oxy, cho A(2;2), B(5;1) và đường thẳng ∆: x – 2y + 8 = 0. a) Viết PTTQ của d đi qua A và vuông góc với ∆. Tìm H là hình chiếu của A lên ∆. b) Tìm điểm C ∈ ∆, C có hoành độ dương sao cho diện tích tam giác ABC bằng 17. [ads] + Trên mặt phẳng Oxy, cho tam giác ABC có A(2; 1), đường cao BH: x – 3y – 7 = 0, đường trung tuyến CM: x + y + 1 = 0. Tìm B, C. + Tìm tọa độ giao điểm của đồ thị hàm số y = x^2 – 2021x + 2020 với trục hoành.
Đề thi thử TN THPT 2020 lần 3 môn Toán 10 trường THPT Ngô Sĩ Liên - Bắc Giang
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi thử TN THPT 2020 lần 3 môn Toán 10 trường THPT Ngô Sĩ Liên – Bắc Giang; kỳ thi nhằm rèn luyện kiến thức, kỹ năng giải toán thường xuyên cho các em học sinh khối 10, để giúp các em có sự chuẩn bị từ rất sớm cho kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022. Đề thi thử TN THPT 2020 lần 3 môn Toán 10 trường THPT Ngô Sĩ Liên – Bắc Giang mã đề 213 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi thử TN THPT 2020 lần 3 môn Toán 10 trường THPT Ngô Sĩ Liên – Bắc Giang : + Một xưởng sản xuất hai loại sản phẩm dung dịch hóa học, mỗi một lít sản phẩm loại I cần 2 lít nguyên liệu, 3 giờ làm và thu lãi 75.000 đồng. Mỗi một lít sản phẩm loại II cần 3 lít nguyên liệu, 5 giờ làm và thu lãi 120.000 đồng. Xưởng có 300 lít nguyên liệu và 480 giờ làm việc. Số tiền lãi lớn nhất có thể đạt được là? A. 11.700.000 đồng. B. 11.520.000 đồng. C. 11.250.000 đồng. D. 12.000.000 đồng. [ads] + Trong hệ trục Oxy, cho điểm M(a;b) thay đổi trên đường thẳng d: 2x + y – 3 = 0 và hai điểm A(1;4), B(2;1). Khi diện tích tam giác MAB đạt giá trị nhỏ nhất, giá trị của ab bằng? + Gọi x1, x2 là hai nghiệm phương trình x^2 – 2(m – 1)x + 2m^2 – 3m + 1. Biết rằng biểu thức |x1 + x2 + x1x2| đạt giá trị lớn nhất khi m = m0. Mệnh đề nào dưới đây đúng?