Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Nguyễn Chí Thanh TP HCM

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Nguyễn Chí Thanh TP HCM Bản PDF Với mục đích đánh giá định kì chất lượng dạy và học môn Toán của giáo viên và học sinh khối 11, ngày … tháng 12 năm 2019, trường THPT Nguyễn Chí Thanh, thành phố Hồ Chí Minh tổ chức kì thi kiểm tra học kì 1 Toán lớp 11 năm học 2019 – 2020. Đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Chí Thanh – TP HCM gồm có 01 trang với 09 bài toán tự luận, thời gian học sinh làm bài 90 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Chí Thanh – TP HCM : + Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AB, biết AB = 2CD. Gọi G là trọng tâm của tam giác SBC và E, F lần lượt là trung điểm của các cạnh BC, AD. 1) Tìm giao tuyến của các mặt phẳng: (SAB) với (SCD) và (SAD) với (SBC). 2) Tìm giao điểm K của GF với (SAC). 3) I là giao điểm của BD với EF. Chứng minh: GI song song với (SAD). 4) (α) là mặt phẳng qua GI và song song với BC. Tìm thiết diện của (α) với hình chóp S.ABCD. [ads] + Một câu lạc bộ văn nghệ có 4 nam và 5 nữ. Nhà trường muốn chọn 4 em tham gia một tốp ca. Tính xác suất để tốp ca có cả nam lẫn nữ. + Trong khai triển (xy + x^2)^15 hãy tìm số hạng có số mũ của x bằng bình phương số mũ của y.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An - Hà Nội 2014 - 2015
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có đáp án và thang điểm. Trích một số bài toán trong đề thi: + Một bình chứa 15 quả cầu, với 4 quả cầu xanh, 5 quả cầu đỏ và 6 quả cầu vàng. Lấy ngẫu nhiên 4 quả cầu. Tính xác suất để trong 4 quả cầu lấy được có đủ ba màu. + Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB song song với CD. Gọi M, N lần lượt là trung điểm của các cạnh SA, SB và P là điểm thuộc cạnh BC sao cho BP = 3PC. 1. Tìm giao tuyến của mặt phẳng (MNP) và mặt phẳng (SCD). 2. Tìm giao điểm của đường thẳng MP và mặt phẳng (SBD).
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An - Hà Nội 2014 - 2015
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có đáp án và thang điểm Trích một số bài toán trong đề: + Từ các chữ số thuộc tập hợp A = {0,1,2,3,4,5}, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và chữ số 2? + Gieo một con súc sắc 3 lần liên tiếp. Tính xác suất để trong 3 lần gieo có ít nhất 2 lần mặt xuất hiện là 6 chấm. + Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(1; -1) và đường thẳng d: 2x – 3y – 2 = 0. Viết phương trình đường thẳng d ‘ là ảnh của đường thẳng d qua phép đối xứng tâm A. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh SA, CD. 1. Tìm giao tuyến của hai mặt phẳng (EFD) và (SAB). 2. Xác định giao điểm của đường thẳng EF với mặt phẳng (SBD).
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An - Hà Nội 2013 - 2014
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 6 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề thi: + Có 4 đồ vật đôi một khác nhau được chia hết cho ba người. Hỏi có bao nhiêu cách chia để mỗi người có ít nhất một đồ vật. + Gieo một con súc sắc (được chế tạo cân đối, đồng chất) hai lần liên tiếp. Tính xác suất để tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo là một số lẻ. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. M và N lần lượt là trung điểm các cạnh SA, CD. 1. Chứng minh MN song song với mặt phẳng (SBC). 2. (a) là mặt phẳng qua M, song song với AN và SC. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (a). 3. Mặt phẳng (a) cắt đường thẳng SB tại I. Tính tỉ số IS/IB
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An - Hà Nội 2013 - 2014
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 3 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề: + Một đội văn nghệ của trường có 8 tiết mục múa hát và 4 tiết mục kịch. Hỏi có bao nhiêu cách chọn 5 tiết mục đi dự thi trong đó có ít nhất 2 tiết mục kịch. + Có hai hộp cầu, mỗi hộp chứa 15 quả cầu được đánh số từ 1 đến 15. Lấy ngẫu nhiên từ mỗi hộp một quả cầu. Tính xác suất để tích số trên hai quả cầu thỏa mãn: a. là một số lẻ. b. là một số chia hết cho 6. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trọng tâm của tam giác SAB và SAD. 1. Chứng minh rằng MN song song với mặt phẳng (ABCD). 2. P là trung điểm của BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (MNP). 3. Gọi Q là giao điểm của SB và mặt phẳng (MNP). Tính tỉ số SQ/SB