Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Quốc Oai - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Quốc Oai – Hà Nội : + Nhà trường thành lập 3 đội thi tuyên truyền Văn hoá ứng xử. Trong đó, 2 3 số học sinh đội I bằng 8 11 số học sinh đội II và bằng 4 5 số học sinh đội III. Biết rằng số học sinh đội I ít hơn tổng số học sinh của đội II và đội III là 18 học sinh. Tính số học sinh của mỗi đội. + Một chiếc hộp có 12 quả bóng có kích thước và khối lượng như nhau. Mỗi quả bóng được ghi một trong các số khác nhau từ 1 đến 12. Lấy ngẫu nhiên một quả bóng trong hộp. Xét biến cố “số xuất hiện trên quả bóng là số nguyên tố”. Tính xác suất của biến cố trên. + Có 6 túi lần lượt chứa 18, 19, 21, 23, 25, 34 quả bóng. Có 5 túi chứa bóng màu đỏ, túi còn lại chứa bóng màu xanh. Bạn Quốc lấy 3 túi, bạn Oai lấy 2 túi, còn lại túi chứa bóng xanh. Khi đó, tổng số bóng của Quốc gấp đôi tổng số bóng của Oai. Hỏi: a/ Số bóng màu xanh? b/ Bạn Quốc lấy 3 túi chứa những số bóng nào?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2021 - 2022 phòng GDĐT Hương Khê - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Hương Khê, tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 7 năm 2021 – 2022 phòng GD&ĐT Hương Khê – Hà Tĩnh : + Cho ABC có ba góc nhọn, trung tuyến AM. Trên nửa mặt phẳng bờ AB chứa điểm C, vẽ đoạn thẳng AE vuông góc và bằng AB. Trên nửa mặt phẳng bờ AC chứa điểm B, vẽ đoạn thẳng AD vuông góc và bằng AC. a) Chứng minh: BD = CE b) Trên tia đối của tia MA lấy N sao cho MN = MA. Chứng minh: ADE = CAN. c) Gọi I là giao điểm của DE và AM. Chứng minh? + Tìm số tự nhiên Biết rằng nếu gạch bỏ đi một chữ số của thì được số mới nhỏ hơn số là 2022 đơn vị. + Cháu An được mừng tuổi 24 tờ tiền loại 20 000đ, 50 000đ, 100 000đ. Biết giá trị mỗi loại tiền trên đều bằng nhau. Hỏi cháu An có mấy tờ tiền mỗi loại?
Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Tiền Hải, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2021 – 2022 phòng GD&ĐT Tiền Hải – Thái Bình : + Tìm 3 phân số có tổng bằng 9 9 70 biết các tử số tỉ lệ theo 3:4:5 và các mẫu số tương ứng tỉ lệ theo 5:1:2. + Cho tam giác ABC cân tại A có ba góc đều nhọn. Về phía ngoài tam giác vẽ tam giác ABE vuông cân tại B. Kẻ đường cao AH (H thuộc BC), trên tia đối của tia AH lấy điểm I sao cho AI = BC. 1) Chứng minh: Hai tam giác ABI và BEC bằng nhau. 2) Chứng minh: BI vuông góc với CE. 3) Phân giác của góc ABC cắt cạnh AC tại D, phân giác của góc BDC cắt cạnh BC tại M. Phân giác góc BDA cắt đường thẳng BC tại N. Chứng minh: BD 1 MN 2. + Cho 2022 số a1, a2, a3, ……., a2021, a2022 là các số tự nhiên khác 0 thỏa mãn: 1 2 3 2021 2022 111 1 1 aaa a a. Chứng minh rằng: Tồn tại ít nhất một số trong 2022 số đã cho là số chẵn.
Đề HSG Toán 7 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An.
Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Ân Thi - Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Ân Thi, tỉnh Hưng Yên.