Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán THPT năm 2019 - 2020 sở GDĐT Cần Thơ

Chủ Nhật ngày 10 tháng 05 năm 2020, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi chọn học sinh giỏi môn Toán GD THPT cấp thành phố năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán THPT năm 2019 – 2020 sở GD&ĐT Cần Thơ gồm có 02 trang với 09 bài toán dạng tự luận, thang điểm 20, thời gian làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán THPT năm 2019 – 2020 sở GD&ĐT Cần Thơ : + Ban chấp hành Đoàn TNCS HCM của một trường THPT có 12 ủy viên là đoàn viên học sinh. Trong đó, khối 10 có 5 đoàn viên, khối 11 có 4 đoàn viên và khối 12 có 3 đoàn viên. Trong đợt phòng chống dịch bệnh Covid-19, để giúp người dân thực hiện việc khai báo y tế trên ứng dụng NCOVI, Bí thư Đoàn trường đã chọn ra 4 đoàn viên trong số này để đi làm nhiệm vụ. Tính xác suất sao cho 4 đoàn viên được chọn có đủ ba khối. [ads] + Một cửa hàng bán hàng trả góp cho khách hàng với điều kiện như sau: Không cần phải trả trước số tiền M là trị giá của món hàng khi mua hàng. Chỉ cần trả một số tiền cố định X mỗi tháng kể từ ngày mua với lãi suất cố định hàng tháng là r%. Thời hạn trả hết nợ là n tháng (do khách hàng chọn theo qui định của cửa hàng). Hãy lập công thức tính số tiền X mà khách hàng phải trả góp hàng tháng với các điều kiện nêu trên. + Ở vòng bán kết của một giải Tiger cup có sự góp mặt của 4 đội Việt Nam, Xingapo, Thái Lan và Inđônêxia. Trước khi các trận đấu của vòng này diễn ra các bạn Hưng, Huy và Hoàng dự đoán như sau: Hưng: Xingapo hạng nhì, Thái Lan hạng ba. Huy: Việt Nam hạng nhì, Thái Lan hạng tư. Hoàng: Xingapo hạng nhất, Inđônêxia hạng nhì. Biết rằng, dự đoán của mỗi bạn đều có một dự đoán đúng và một dự đoán sai. Bằng lập luận dựa theo các dữ kiện đã cho, hãy xác định kết quả xếp hạng đúng cho mỗi đội.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 - 2019 sở GDĐT Hưng Yên
giới thiệu đến thầy, cô và các em nội dung đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên, đề gồm 01 trang với 06 bài toán tự luận, học sinh làm bài thi trong thời gian 180 phút, kỳ thi nhằm phát hiện, tuyển chọn các em học sinh giỏi môn Toán THPT đang học tập tại các trường THPT tại tỉnh Hưng Yên để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán tỉnh Hưng Yên tham dự kỳ thi HSG Toán THPT cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên : + Cho hàm số y = x^4 – mx^2 + 2m – 2 (C) với m là tham số. Gọi A là một điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm các giá trị của m để tiếp tuyến của đồ thị (C) tại A cắt đường tròn (T): x^2 + y^2 = 4 tại hai điểm phân biệt tạo thành một dây cung có độ dài nhỏ nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a và góc ABC = 60 độ. Gọi E, F lần lượt là trung điểm của các cạnh SC, SD. Biết SA = SC = SD và mặt phẳng (ABEF) vuông góc với mặt bên (SCD), tính thể tích khối chóp S.ABCD theo a. + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + cx + 1 với a, b, c là số thực không âm. Biết rằng f(x) = 0 có 4 nghiệm thực, chứng minh f(2018) = 2019^4.
Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 - 2019 sở GDĐT Lào Cai
Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai được biên soạn và tổ chức thi ngày 22 tháng 01 năm 2019 nhằm tìm kiếm và tuyên dương các em học sinh khối THPT giỏi môn Toán đang học tập tại các trường THPT tại tỉnh Lào Cai, đề gồm 01 trang với 05 bài toán tự luận, học sinh làm bài thi trong vòng 180 phút. Trích dẫn đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang vuông ABCD vuông tại A và D, có CD = 2AD = 2AB. Gọi M (2;4) là điểm thuộc cạnh AB sao cho AB = 3AM . Điểm N thuộc cạnh BC sao cho tam giác DMN cân tại M. Phương trình đường thẳng MN là 2x + y – 8 = 0. Tìm tọa độ các đỉnh của hình thang ABCD biết D thuộc đường thẳng d: x + y = 0 và điểm A thuộc đường thẳng d’: 3x + y – 8 = 0. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Biết hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm M thỏa mãn AD = 3MD. Trên cạnh CD lấy các điểm I, N sao cho góc ABM = MBI và MN vuông góc với BI. Biết góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 60°. Tính thể tích của khối chóp S.AMCB và tính khoảng cách từ N đến mặt phẳng (SBC). + Cho hàm số y = f(x) có đạo hàm f'(x) = (x – 3)^2018.(e^2x – e^x + 1/3).(x^2 – 2x) với mọi x thuộc R. Tìm tất cả các số thực m để hàm số f(x^2 – 8x + m) có đúng 3 điểm cực trị sao cho x1^2 + x2^2 + x3^2 = 50 trong đó x1, x2, x3 là hoành độ của ba điểm cực trị đó.
Đề thi chọn HSG Toán 12 THPT năm 2018 - 2019 sở GDĐT Đồng Nai
giới thiệu đến bạn đọc nội dung đề thi chọn HSG Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Đồng Nai, kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2019, đề thi được dành cho học sinh khối 12 theo học chương trình chuẩn hệ THPT, đề gồm 06 bài toán tự luận, thời gian làm bài 180 phút, bên dưới là lời giải tham khảo của đề thi này. Trích dẫn đề thi chọn HSG Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Đồng Nai : + Cho hàm số y = 2x^3 – 3(m + 3)x^2 + 18mx + 8, với m là tham số. a) Tìm m để hàm số đã cho đồng biến trên R. b) Tìm m để đồ thị hàm số đã cho có hai điểm cực trị nằm vế hai phía của trục tung. c) Tìm m để giá trị nhô nhất của hàm số đã cho trên đoạn [-1;0] bằng 24. + Chứng minh rằng 3nCn chia hết cho 3 với mọi n nguyên dương. [ads] + Trong một tiết học môn Toán, giáo viên mời ba học sinh A, B, C thực hiện trò chơi chơi như sau: Mỗi bạn A, B, C chọn ngẫu nhiên một số nguyên khác 0 thuộc khoảng (-6;6) và lần lượt thế vào ba tham số của hàm số y = ax^4 + bx^2 + c; nếu đồ thị hàm số thu được có ba điểm cực trị đều nằm phía trên trục hoành thì được nhận thưởng. Tính xác suất để ba học sinh A, B, C được nhận thưởng.
Đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 - 2019 sở GDĐT Lâm Đồng
Đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Lâm Đồng dành cho hệ THPT, kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2019, đề thi có 01 trang với 08 câu tự luận, thời gian làm bài 180 phút, kỳ thi nhằm tuyển chọn các em học sinh khối 12 học theo hệ chương trình THPT giỏi Toán để biểu dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán tỉnh Lâm Đồng, tiếp tục bồi dưỡng, tham dự kỳ thi cấp Quốc gia.