Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Hà Nội

Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2021 - 2022 của Sở GDĐT Hà Nội Đề thi tuyển sinh môn Toán năm 2021 - 2022 của Sở GDĐT Hà Nội Để chọn ra những học sinh tiêu biểu cho lớp 10 THPT, vào ngày Chủ Nhật 13 tháng 06 năm 2021, Sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi tuyển sinh môn Toán. Đề thi này bao gồm một trang với 5 bài toán dạng tự luận, học sinh được 90 phút để hoàn thành bài thi. Đề thi đi kèm với đáp án chi tiết và lời giải, được thực hiện bởi các thành viên của CLB Toán Lim: Nguyễn Duy Khương, Hà Huy Khôi, Đoàn Phương Khang, Bùi Hồng Hạnh, Nguyễn Đức Toàn và Nguyễn Khang. Trích dẫn một số bài toán trong đề tuyển sinh lớp 10 môn Toán năm 2021-2022 của Sở GDĐT Hà Nội: 1. Bài toán về tổ sản xuất và việc hoàn thành 4800 bộ đồ bảo hộ y tế trước hạn. Học sinh cần giải phương trình để tìm ra số bộ đồ bảo hộ y tế cần sản xuất mỗi ngày theo kế hoạch. 2. Bài toán về thùng nước hình trụ và việc sơn toàn bộ phần ngoài của thùng nước. Học sinh sẽ tính diện tích bề mặt được sơn của thùng nước dựa trên chiều cao và bán kính của thùng. 3. Bài toán về tam giác vuông và đường tròn nội tiếp. Học sinh được yêu cầu chứng minh một số tính chất của các điểm trên đường tròn nội tiếp tam giác và tính cân của tam giác được tạo ra bởi các đường tròn. Đề thi tuyển sinh môn Toán năm 2021 - 2022 của Sở GDĐT Hà Nội không chỉ là cơ hội để thí sinh thử sức mình với những bài toán thú vị mà còn là bước chuẩn bị quan trọng cho hành trình học tập phía trước.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 - 2018 môn Toán sở GD và ĐT Bến Tre
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 – 2018 môn Toán sở GD và ĐT Bến Tre gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình x^2 – 2(m – 1)x – (2m + 1) = 0 (1) (m là tham số) a) Giải phương trình (1) với m = 2 b) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m c) Tìm m để phương trình (1) luôn có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau [ads] + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = – 2x^2 và đường thẳng (d): y = 2x – 4 a) Vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ b) Bằng phương pháp đại số, hãy tìm tọa độ giao điểm của (P) và (d)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường TH Cao Nguyên - Đắk Lắk
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường TH Cao Nguyên – Đắk Lắk gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn tâm O, từ A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi E là giao điểm của OA và BC. a. Chứng minh tứ giác ABOC nội tiếp. b. Chứng minh BA.BE = AE.BO. c. Gọi I là trung điểm của BE, đường thẳng qua I và vuông góc với OI cắt tia AB và AC theo thứ tự tại D và F. Chứng minh góc IDO và góc BCO bằng nhau và tam giác DOF cân. + Cho tam giác ABC có hai đường phân giác trong BD và CE. Điểm M bất kì trên đoạn DE. Gọi H, K, L lần lượt là hình chiếu của M trên BC, CA, AB. Chứng minh rằng MK + ML = MH .
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Lạng Sơn gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho nửa đường tròn tâm O, đường kính AB. Dựng tiếp tuyến Ax (Ax và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB). C là một điểm nằm trên nửa đường tròn (C không trùng A và B), dựng tiếp tuyến Cy của nửa đường tròn (O) cắt Ax tại D. Kẻ CH vuông góc với AB (H thuộc AB), BD cắt (O) tại điểm thứ hai là K và cắt CH tại M. Gọi J là giao điểm của OD và AC. a) Chứng minh rằng tứ giác AKMH nội tiếp được một đường tròn. b) Chứng minh rằng tứ giác CKJM nội tiếp được một đường tròn (O1). c) Chứng minh DJ là tiếp tuyến của đường tròn (O1).
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Long An
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Long An gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai hàm số : y = -x2 và y = 2x – 5. Vẽ đồ thị hai hàm số đã cho trên cùng mặt phẳng tọa độ Oxy. + Viết phương trình đường thẳng (d): y = ax + b, biết (d) đi qua hai điểm A(-1; 10); B(3; -2). + Cho đường tròn (O) đường kính AC. Trên bán kính OC lấy điểm B tùy ý (B không trùng O và C). Gọi M là trung điểm của đoạn thẳng AB. Qua M kẻ dây cung DE vuông góc với AB. Kẻ BI vuông góc với CD (I thuộc CD). [ads] a) Cho AM = 4cm; MC = 9cm. Tình độ dài đoạn thẳng MD và tanA của tam giác MDA. b) Chứng minh : BMDI là tứ giác nội tiếp. c) Chứng minh ADBE là hình thoi và ba điểm I; B; E thẳng hàng. d) Gọi O’ là tâm đường tròn đường kính BC. Chứng minh: MI là tiếp tuyến của (O’).