Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán

Dựa trên đề thi tham khảo kỳ thi THPT Quốc gia năm 2020 môn Toán do Bộ Giáo dục và Đào tạo công bố, vừa qua, tập thể quý thầy, cô giáo nhóm Toán VD – VDC đã biên soạn bộ câu hỏi và bài tập phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán, nhằm giúp các em học sinh khối 12 có được tài liệu ôn tập bám sát, chất lượng để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán gồm có 42 trang, là sản phẩm đặc biệt của Tổ Phản Biện Các Sản Phẩm Quan Trọng Của Nhóm Toán VD – VDC. Với mỗi câu trong đề, tài liệu bổ sung thêm 3-5 câu hỏi và bài toán tương tự, có đáp án và lời giải chi tiết. Trích dẫn bộ đề phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: + Định hướng xây dựng bài toán: Bài toán giữ nguyên ý tưởng câu 43 (sử dụng phương pháp đặt ẩn phụ) thay đổi cách đặt vấn đề và phương trình mũ thay cho phương trình logarit: “Tính tổng T các giá trị nguyên của tham số m để phương trình 3^x + (m^2 – m)3^-x = 2m có đúng hai nghiệm phân biệt nhỏ hơn 1/log3”. [ads] + Phát triển câu 32, sử dụng ứng dụng của tích vô hướng vào việc quỹ tích điểm M thỏa mãn đẳng thức cho trước, bài toán có sử dụng việc khai thác điểm trung gian: “Trong không gian Oxyz, cho A(2;0;4) và B(0;-6;0), M là một điểm bất kỳ thỏa mãn 3MA^2 + 2MB^2 = 561/280AB^2. Khi đó M thuộc mặt cầu có bán kính là giá trị nào dưới đây?” + Phát triển câu 50 thành bài toán tìm khoảng đồng biến và nghịch biến của hàm số chứa dấu giá trị tuyệt đối: “Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết f(0) = 0 và đồ thị hàm số y = f'(x) như hình sau. Hàm số g(x) = |4f(x) + x^2| đồng biến trên khoảng nào dưới đây?”

Nguồn: toanmath.com

Đọc Sách

Các chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực
Nội dung Các chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Bản PDF - Nội dung bài viết Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán của tác giả Nguyễn Văn Lực bao gồm 372 trang. Được xây dựng dựa trên hệ thống bài tập được chọn lọc và giải chi tiết, được phân loại theo từng chuyên đề. Đây sẽ là công cụ hữu ích giúp học sinh ôn tập, nắm vững kiến thức và rèn luyện kỹ năng làm bài thi môn Toán một cách hiệu quả.
Kĩ năng sử dụng máy tính Casio trong giải toán Bùi Thế Việt
Nội dung Kĩ năng sử dụng máy tính Casio trong giải toán Bùi Thế Việt Bản PDF - Nội dung bài viết Kĩ Năng Sử Dụng Máy Tính Casio Trong Giải Toán Kĩ Năng Sử Dụng Máy Tính Casio Trong Giải Toán Trong các dụng cụ học tập được phép mang vào phòng thi trong các kỳ thi đại học, kỳ thi THPT Quốc Gia thì máy tính cầm tay là dụng cụ không thể thiếu giúp chúng ta tính toán nhanh chóng. Máy tính cầm tay không chỉ giúp chúng ta tính toán một cách chính xác mà còn là một trợ thủ đắc lực trong việc giải toán, đặc biệt là giải Phương Trình, Hệ Phương Trình, Bất Phương Trình, Bất Đẳng Thức và nhiều loại toán khác. Tác giả Bùi Thế Việt là một người rất đam mê với những kỹ năng, thủ thuật sử dụng máy tính cầm tay trong giải toán. Đã có nhiều trường hợp tác giả áp dụng những kỹ năng này vào các kỳ thi và đạt được kết quả đáng kinh ngạc. Việt chia sẻ rằng chỉ cần vài phút, anh đã giải quyết một câu Phương Trình Vô Tỷ một cách chính xác và nhanh chóng. Để sử dụng máy tính Casio một cách hiệu quả, hãy đến với chuyên đề Kỹ Năng Sử Dụng Casio Trong Giải Toán. Chuyên đề này giới thiệu 8 kỹ năng sử dụng máy tính Casio trong việc giải các loại toán khác nhau. Các thủ thuật bao gồm: Thủ thuật sử dụng Casio để rút gọn biểu thức. Thủ thuật sử dụng Casio để giải phương trình bậc 4. Thủ thuật sử dụng Casio để tìm nghiệm phương trình. Thủ thuật sử dụng Casio để phân tích đa thức thành nhân tử một ẩn. Thủ thuật sử dụng Casio để phân tích đa thức thành nhân tử hai ẩn. Thủ thuật sử dụng Casio để giải hệ phương trình. Thủ thuật sử dụng Casio để tích nguyên hàm, tích phân. Thủ thuật sử dụng Casio để giải bất đẳng thức. Đến với chuyên đề này, bạn sẽ được trải nghiệm những thủ thuật đặc biệt mà máy tính Casio có thể mang lại. Hãy học ngay để nâng cao khả năng giải toán của mình và đạt được kết quả xuất sắc trong các kỳ thi.
Chuyên đề bài toán thực tế Đoàn Văn Bộ
Nội dung Chuyên đề bài toán thực tế Đoàn Văn Bộ Bản PDF - Nội dung bài viết Chuyên đề bài toán thực tế của Đoàn Văn Bộ: Phương pháp giải bài toán thông qua Bất Phương trình Bậc Nhất Hai Ẩn Chuyên đề bài toán thực tế của Đoàn Văn Bộ: Phương pháp giải bài toán thông qua Bất Phương trình Bậc Nhất Hai Ẩn Chuyên đề này bao gồm 16 trang hướng dẫn cách giải các bài toán thực tế phổ biến do tác giả Đoàn Văn Bộ biên soạn. Phương pháp giải bài toán dựa vào kiến thức về Bất Phương trình Bậc Nhất Hai Ẩn và Hệ Bất Phương trình Bậc Nhất Hai Ẩn mà nhiều giáo viên trung học phổ thông thường bỏ qua khi giảng dạy. Việc giải bài toán kinh tế thường đòi hỏi xét những hệ bất phương trình bậc nhất hai ẩn và giải chúng. Loại bài toán này thường được nghiên cứu trong lĩnh vực toán học là Quy hoạch tuyến tính. Tuy nhiên, ở cấp độ trung học phổ thông, chúng ta chỉ cần xem xét và giải những bài toán đơn giản. Ngoài ra, chuyên đề còn đề cập đến một số bài toán thực tế và lý thuyết khác như Đạo hàm, Khảo sát hàm số và các khái niệm liên quan. Hy vọng thông qua việc học chuyên đề này, các bạn sẽ tự tin giải quyết các bài toán tương tự trong đề thi THPT Quốc gia.
Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn
Nội dung Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn Bản PDF - Nội dung bài viết Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn Tài liệu với 298 trang này được biên soạn bởi đội ngũ giáo viên của Trung tâm luyện thi Vĩnh Viễn và bao gồm hình học Oxy – Oxyz và hình học không gian. Các nội dung chính trong cuốn sách bao gồm: Phần 1: Hình học giải tích trong mặt phẳng Oxy Bài 1: Phương pháp tọa độ trên mặt phẳng Oxy Bài 2: Đường thẳng Bài 3: Đường tròn Bài 4: Elip Bài 5: Hyperbol Bài 6: Parabol Phần 2: Hình học không gian Bài 1: Quan hệ song song Bài 2: Quan hệ vuông góc Bài 3: Các bài toán tính thể tích Phần 3: Hình học giải tích trong không gian Oxyz Bài 1: Hệ tọa độ trong không gian Bài 2: Mặt phẳng và các bài toán liên quan Bài 3: Mặt cầu Bài 4: Đường thẳng và các bài toán liên quan Cuốn sách được viết theo cấu trúc sẽ giúp học sinh hiểu được lý thuyết một cách có hệ thống và đầy đủ. Các dạng toán được phân loại và giải thích một cách dễ hiểu, đi kèm với nhiều bài tập mẫu từ dễ đến khó. Cuốn sách cũng bao gồm nhiều bài tập tự luyện được biên soạn một cách kỹ lưỡng theo đề thi tuyển sinh Đại học, với đáp án hoặc hướng dẫn giải chi tiết. Qua đó, cuốn sách sẽ giúp học sinh rèn luyện và nắm vững kiến thức hình học một cách hiệu quả để chuẩn bị tốt cho kỳ thi tuyển sinh.