Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Tây Mỗ - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Tây Mỗ – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ cùng sơn cửa cho một ngôi nhà trong 2 ngày thì xong việc. Nếu người thứ nhất làm trong 4 ngày rồi nghỉ và người thứ hai làm tiếp trong 1 ngày thì xong việc. Hỏi nếu mỗi người làm một mình thì bao lâu xong việc? + Một tàu ngầm đang ở trên mặt biển thì lặn xuống theo phương tạo với mặt nước biển một góc 20°. Hỏi nếu tàu chuyển động theo phương lặn xuống được 200m thì nó ở độ sâu bao nhiêu mét so với mặt nước biển? + Từ điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA; MB (A, B là hai tiếp điểm) và cát tuyến MEK (tia ME nằm giữa hai tia MO và MA). Gọi I là trung điểm của EK a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh: MK.ME = MA2 từ đó chứng minh: ME.MK < MO2. c) Gọi S là giao điểm của MK và AB. Chứng minh MIA đồng dạng BIS và IA.IB = SA.SB + IS2.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 Toán 9 năm 2020 - 2021 trường THCS Đông Thạnh - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 Toán 9 năm học 2020 – 2021 trường THCS Đông Thạnh, thành phố Hồ Chí Minh. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2020 – 2021 trường THCS Đông Thạnh – TP HCM : + Cho phương trình 4×2 + 4x − 3 = 0 (x là ẩn số). Không giải phương trình, hãy tính x21 + x22 + 3×1 + 3×2 (với x1, x2 là hai nghiệm của phương trình đã cho). + Có 25 quyển vở gồm 2 loại. Vở loại một giá 13000 đồng một quyển; vở loại hai giá 10000 đồng một quyển. Số tiền mua 25 quyển vở là 280000 đồng. Tính số quyển vở mỗi loại. + Cho hình vẽ. Biết đường tròn tâm O có sđBmC = 80◦, sđDnE = 60◦. Tính góc BOC và góc DAE.
Đề thi giữa học kỳ 2 Toán 9 năm 2018 - 2019 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi kiểm tra chất lượng giữa học kỳ 2 môn Toán 9 năm học 2018 – 2019 phòng Giáo dục và Đào tạo quận Tây Hồ, thành phố Hà Nội. Trích dẫn đề thi giữa học kỳ 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Tây Hồ – Hà Nội : + Hai vòi nước cùng chảy vào bể không có nước thì sau 12 giờ đầy bể. Nếu người ta mở cả hai vòi chảy trong 4 giờ rồi khóa vòi hai lại và để vòi một chảy tiếp 14 giờ nữa thì mới đầy bể. Tính thời gian mỗi vòi chảy một mình đầy bể. + Cho đường tròn (O; R) và đường thẳng d không có điểm chung với đường tròn. Từ điểm M thuộc đường thẳng d kẻ hai tiếp tuyến MA, MB tới đường tròn. Hạ OH vuông góc với đường thẳng d tại H. Nối AB cắt OH tại K, cắt OM tại I. Tia OM cắt đường tròn (O; R) tại E. a) Chứng minh AOBM là tứ giác nội tiếp b) Chứng minh OI.OM = OK.OH c) Chứng minh E là tâm đường tròn nội tiếp tam giác MAB d) Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có giá trị lớn nhất. + Cho hai số dương x, y thỏa mãn x + y = 1. Tìm giá trị nhỏ nhất của biểu thức A.
Đề thi giữa kì 2 Toán 9 năm 2018 - 2019 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô và các em học sinh lớp 9 đề thi giữa kì 2 Toán 9 năm học 2018 – 2019 trường THCS&THPT Nguyễn Tất Thành, thành phố Hà Nội.
10 đề thi chất lượng giữa học kỳ 2 Toán 9
THCS. giới thiệu đến bạn đọc tài liệu tuyển tập 10 đề thi chất lượng giữa học kỳ 2 Toán 9, bộ đề được biên soạn bởi thầy Lương Tuấn Đức nhằm giúp các em học sinh lớp 9 tự ôn tập để chuẩn bị cho kỳ kiểm tra định kỳ môn Toán 9 giai đoạn giữa học kỳ 2 của năm học. Các đề thi chất lượng giữa học kỳ 2 Toán 9 trong tài liệu được biên soạn theo hình thức tự luận với 05 câu hỏi và bài toán ở mỗi đề thi, đây là dạng đề được nhiều trường Trung học Cơ sở và Phòng Giáo dục & Đào tạo áp dụng, học sinh làm bài trong 90 phút. [ads] Trích dẫn tài liệu 10 đề thi chất lượng giữa học kỳ 2 Toán 9 : + Cho nửa đường tròn (O;R), đường kính AB, K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (M khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP song song với KM, Q là giao điểm của AP với BM, E là giao điểm của BP và AM. 1. Chứng minh PQME là tứ giác nội tiếp. 2. Chứng minh hai tam giác AKN, BKM bằng nhau và AM.BE = AN.AQ. 3. Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp tam giác OMP. Chứng minh khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường cố định. + Trong quý I năm 2018, hai đội thuyền đánh cá bắt được tổng cộng 360 tấn cá. Sang quý I năm 2019 đội thứ nhất vượt mức 10% và đội thứ hai vượt mức 8% nên cả hai đội đánh bắt được 393 tấn. Hỏi quý I mỗi năm mỗi đội đánh bắt được bao nhiêu tấn cá? + Cho parabol (P): y = x^2 và đường thẳng d: y = ax – a. 1. Tìm a để đường thẳng d cắt trục tung tại điểm có hoành độ nhỏ hơn 3. 2. Tìm a để (P) cắt d tại hai điểm M(x1;y1), N(x2;y2) thỏa mãn |x1 – x2| ≥ √5.