Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 năm 2018 - 2019 trường THPT chuyên Hùng Vương - Phú Thọ

giới thiệu đến bạn đọc bản lời giải chi tiết đề khảo sát chất lượng Toán 12 năm 2018 – 2019 trường THPT chuyên Hùng Vương – Phú Thọ, đề nhằm đánh giá năng lực môn Toán của học sinh giai đoạn khởi động năm học, đồng thời giúp học sinh ôn lại các kiến thức Toán 10, Toán sau kỳ nghỉ hè kéo dài. Lời giải chi tiết được biên soạn và trình bày bởi quý thầy, cô giáo nhóm Strong Team Toán VD-VDC. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2018 – 2019 trường THPT chuyên Hùng Vương – Phú Thọ : + Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2;9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau? [ads] + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Một người muốn có 1 tỉ tiền tiết kiệm sau 6 năm gửi ngân hàng bằng cách bắt đầu từ ngày 01/01/2019 đến 31/12/2024, vào ngày 01/01 hàng năm người đó gửi vào ngân hàng một số tiền bằng nhau với lãi suất ngân hàng là 7% /1 năm (tính từ ngày 01/01 đến ngày 31/12) và lãi suất hàng năm được nhập vào vốn. Hỏi số tiền mà người đó phải gửi vào ngân hàng hàng năm là bao nhiêu (với giả thiết lãi suất không thay đổi và số tiền được làm tròn đến đơn vị đồng)?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL học sinh lớp 12 môn Toán lần 2 năm 2022 2023 sở GD ĐT Phú Thọ
Nội dung Đề KSCL học sinh lớp 12 môn Toán lần 2 năm 2022 2023 sở GD ĐT Phú Thọ Bản PDF Nhằm hướng đến kỳ thi tốt nghiệp THPT năm 2023, Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh môn Toán lớp 12 lần 2 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 101); kỳ thi được diễn ra vào thứ Năm ngày 27 tháng 04 năm 2023. Trích dẫn Đề KSCL học sinh Toán lớp 12 lần 2 năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Một khối nón (N) có bán kính đáy bằng R và chiều cao bằng 15, được làm bằng chất liệu không thấm nước, có khối lượng riêng lớn hơn khối lượng riêng của nước. Khối (N) được đặt trong một cái cốc hình trụ đường kính bằng 4R, sao cho đáy của (N) tiếp xúc với đáy của cốc (tham khảo hình vẽ). Đổ nước vào cốc đến khi mức nước đạt độ cao bằng 15 thì lấy khối (N) ra. Độ cao của nước trong cốc sau khi đã lấy khối (N) ra bằng? + Trong không gian Oxyz, cho hai điểm M (1;2;−2) và S(−1;4;3). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho M là trực tâm của tam giác ABC. Thể tích của khối chóp S.ABC bằng? + Trong không gian Oxyz, cho đường thẳng d: (x + 1)/1 = (y + 2)/2 = (z – 2)/-1 và mặt phẳng (P): x + y + 2z – 8 = 0. Tam giác ABC có A(1;2;−2) và trọng tâm G nằm trên d. Khi các đỉnh B, C di động trên (P) sao cho khoảng cách từ A tới đường thẳng BC đạt giá trị lớn nhất, một véctơ chỉ phương của đường thẳng BC là?
Đề KSCL lớp 12 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa
Nội dung Đề KSCL lớp 12 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 ôn thi tốt nghiệp Trung học Phổ thông năm học 2023 – 2024 lần 1 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL Toán lớp 12 thi TN THPT 2024 lần 1 trường THPT Ba Đình – Thanh Hóa : + Cho hình vuông ABCD cạnh a. Trên đường thẳng vuông góc với (ABCD) tại A lấy điểm S di động không trùng với A. Hình chiếu vuông góc của A lên SB SD lần lượt tại H K. Tìm giá trị lớn nhất của thể tích khối tứ diện ACHK. + Với hai số thực a b bất kì, ta kí hiệu 2 3 a b f x xa xb x. Biết rằng luôn tồn tại duy nhất số thực 0 x để 0 min a b a b x R f xf với mọi số thực a b thỏa mãn b a a b và 0 a b. Số 0 x bằng? + Cho hình lập phương có cạnh bằng a và một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt đối diện của hình lập phương. Gọi 1 S là diện tích 6 mặt của hình lập phương 2 S là diện tích xung quanh của hình trụ. Hãy tính tỉ số 2 1 S S. File WORD (dành cho quý thầy, cô):