Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 2 thi THPT QG 2020 trường THPT Đồng Đậu - Vĩnh Phúc

Khảo sát chất lượng môn Toán 12 là kỳ thi được tổ chức thường xuyên trong suốt năm học dành cho học sinh khối 12, để giúp các em được liên tục rèn luyện, củng cố và nâng cao kiến thức – kỹ năng giải toán, để có sự chuẩn bị tốt nhất cho kỳ thi THPT Quốc gia môn Toán. Ngày … tháng 12 năm 2019 vừa qua, trường Đồng Đậu, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 lần thứ hai ôn thi THPT Quốc gia môn Toán năm học 2019 – 2020. Đề KSCL Toán 12 lần 2 thi THPT QG 2020 trường THPT Đồng Đậu – Vĩnh Phúc mã đề 101 có hình thức tương tự với đề thi chính thức THPT Quốc gia năm 2019 môn Toán, đề thi có đáp án mã đề 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112. Trích dẫn đề KSCL Toán 12 lần 2 thi THPT QG 2020 trường THPT Đồng Đậu – Vĩnh Phúc : + Cho một tấm nhôm hình tròn tâm O bán kính R được cắt thành hai miếng hình quạt, sau đó quấn thành hai hình nón (N1) và (N2). Gọi V1 và V2 lần lượt là thể tích của khối nón (N1) và (N2). Tính k = V1/V2 biết góc AOB = 90 độ. + Cho hàm số y = f(x) = ax^3 + bx^2 + cx + d có đạo hàm y = f'(x) với đồ thị như hình vẽ bên. Biết rằng đồ thị hàm số y = f(x) tiếp xúc với trục hoành tại điểm có hoành độ dương. Khi đó đồ thị hàm số y = f(x) cắt trục tung tại điểm có tung độ bằng bao nhiêu? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) góc 30°. Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a. + Có bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau abc thỏa mãn chữ số a là chữ số lẻ và a < b < c. + Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh bằng a. Hình chiếu vuông góc của A’ xuống mặt phẳng (ABC) là trung điểm của AB. Mặt bên (AA’C’C) hợp với mặt đáy một góc bằng 45 độ. Tính thể tích của khối lăng trụ ABC.A’B’C’ theo a.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 102); kỳ thi được diễn ra vào ngày … tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Trong không gian Oxyz, cho hai điểm A(2;-2:6), B(3;3;-9) và mặt phẳng (P): 2x + 2y – z – 12 = 0. Điểm M di động trên (P) sao cho MA và MB luôn tạo với (P) các góc bằng nhau. Biết M luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng? + Cho hàm số y = f(x) có đạo hàm cấp hai liên tục trên R. Hình vẽ bên dưới là đồ thị hàm số y = f'(x) trên (-vc;-2], đồ thị hàm số y = f(x) trên đoạn [-2;3] và đồ thị hàm số y = f”(x) trên [3;+vc). Số điểm cực trị tối đa của hàm số y = f(x) là? + Cho hàm số f(x) = ax4 + bx2 + c có đồ thị như hình vẽ. Biết miền tô đậm có diện tích bằng 4/15 và điểm B có hoành độ bằng -1. Số giá trị nguyên của tham số m thuộc đoạn [-3;3] để hàm số y = f(m – 3^x) có đúng một điểm cực trị là?
Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa
Nội dung Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi đánh giá chất lượng môn Toán lớp 12 năm học 2021 – 2022 trường Đại học Hồng Đức, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán lớp 12 năm 2021 – 2022 trường Đại học Hồng Đức – Thanh Hóa : + Cho hình nón đỉnh S có độ dài đường cao là R và đáy là đường tròn tâm O bán kính R. Gọi (d) là tiếp tuyến của đường tròn đáy tại A và (P) là mặt phẳng chứa SA và (d). Mặt phẳng (Q) thay đổi qua S cắt đường tròn O tại hai điểm C, D sao cho CD = √3R. Gọi α là góc tạo bởi (P) và (Q). Tính giá trị lớn nhất của cos α. + Cho hàm số f(x) = x3 + ax2 + bx + c (a, b, c ∈ R) có hai điểm cực trị là −1 và 1. Gọi y = g(x) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của f(x), đồng thời có đỉnh nằm trên đồ thị của f(x) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) gần với giá trị nào nhất dưới đây? + Cho hàm đa thức y = fx2 + 2x có đồ thị cắt trục Ox tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số m với 2022m ∈ Z để hàm số g (x) = fx2 − 2 |x − 1| − 2x + m có 9 điểm cực trị?