Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thái Nguyên

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên Chúng tôi xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2022-2023 của sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên. Đề thi bao gồm đáp án và lời giải chi tiết để giúp các em tự học và ôn tập hiệu quả. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên: 1. Cho tập con A của tập số tự nhiên, biết A có phần tử nhỏ nhất là 1 và lớn nhất là 100. Mỗi phần tử x thuộc A, x*1 luôn biểu diễn được dưới dạng x = a + b trong đó a, b thuộc A và a có thể bằng b. Hãy tìm tập A có số phần tử nhỏ nhất và giải thích cách tìm? 2. Trong tam giác ABC với AB AC và đường tròn nội tiếp O có trực tâm H. Gọi D, E, F lần lượt là chân đường cao kẻ từ A, B, C. Gọi I là trung điểm của BC, P là giao điểm của EF và BC. Đường thẳng DF cắt đường tròn ngoại tiếp tam giác HEF tại K. a) Chứng minh PB = PC = PE = PF và KE song song với BC; b) Đường thẳng PH cắt đường tròn ngoại tiếp tam giác HEF tại Q. Chứng minh tứ giác BIQF nội tiếp. 3. Được cho ba điểm A, B, C phân biệt trên cùng một đường thẳng. Kẻ đường thẳng d vuông góc với AC qua B, D di chuyển trên đường thẳng d sao cho D khác B. Đường tròn ngoại tiếp tam giác ACD cắt d tại E. Gọi P, Q là hình chiếu vuông góc của B lần lượt trên AD và AE. Gọi R là giao điểm của BQ và CD, S là giao điểm của BP và CE. Chứng minh: a) Tứ giác PQSR nội tiếp; b) Tâm đường tròn ngoại tiếp tứ giác PQSR luôn thuộc một đường thẳng cố định khi điểm D di chuyển trên đường thẳng d.

Nguồn: sytu.vn

Đọc Sách

Đề minh họa Toán tuyển sinh lớp 10 năm 2019 - 2020 sở GDĐT Khánh Hòa
Vừa qua, sở Giáo dục và Đào tạo tỉnh Khánh Hòa đã công bố đề minh họa kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020 môn Toán, đề được biên soạn theo cấu trúc tương tự đề các năm học trước, đề gồm 01 trang với 05 bài toán tự luận, học sinh làm bài trong thời gian 120 phút. Trích dẫn đề minh họa Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT Khánh Hòa : + Trên mặt phẳng tọa độ Oxy, cho điểm A(3;-2) và đường thẳng d có phương trình y = x – m với m là tham số. a) Tìm m để điểm N thuộc đường thẳng d. b) Với m tìm được, xác định tọa độ giao điểm của đường thẳng d và parabol (P) có phương trình y = -4x^2. [ads] + Cho AB và CD là hai đường kính khác nhau của đường tròn (O;R). Đường thẳng vuông góc với AB tại A cắt các đường thẳng BC, BD lần lượt tại E và F. a) Chứng minh góc BAD = BFA. b) Chứng minh tứ giác CDEF là tứ giác nội tiếp. c) Gọi I, J lần lượt là trung điểm của các đoạn thẳng AE, AF và H là trực tâm của tam giác BIJ. Tính độ dài đoạn thẳng AH theo R.
Đề tuyển sinh vào 10 môn Toán năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 07 tháng 07 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh vào 10 chuyên môn Toán chuyên năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán chuyên năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh vào 10 chuyên môn Toán cơ sở năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán cơ sở năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 01 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.