Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Nam

Nội dung Đề kiểm tra học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Nam Bản PDF Thứ Năm ngày 14 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi kiểm tra chất lượng học tập môn Toán lớp 11 giai đoạn cuối học kì 1 (HK1 / HKI) năm học 2020 – 2021. Đề kiểm tra học kỳ 1 Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Quảng Nam được biên soạn theo hình thức 50% trắc nghiệm + 50% tự luận, phần trắc nghiệm gồm 15 câu, phần tự luận gồm 03 câu, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án trắc nghiệm và lời giải tự luận mã đề 101, 102, 103, 104. Trích dẫn đề kiểm tra học kỳ 1 Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Quảng Nam : + Trong kỳ thi thử đại học, bạn Nam dự thi hai môn thi trắc nghiệm là Vật lý và Toán. Đề thi của mỗi môn gồm 50 câu hỏi, mỗi câu có 4 phương án lựa chọn trong đó có 1 phương án đúng, trả lời đúng mỗi câu được 0,2 điểm, trả lời sai không có điểm. Mỗi môn thi Nam đều trả lời hết các câu hỏi và chắc chắn đúng 46 câu, trong 4 câu còn lại mỗi câu chọn ngẫu nhiên một trong bốn phương án. Tính xác suất để tổng điểm 2 môn thi của Nam lớn hơn 19,5 điểm (kết quả được làm tròn đến hàng phần nghìn). + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi G là trọng tâm tam giác SAB, M là điểm thuộc cạnh AD sao cho MD = 2MA. a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). b) Mặt phẳng (AGM) cắt các đường thẳng SC, SD lần lượt tại C’, D’. Chứng minh: MG // C’D’. + Một ban nhạc có 7 nam ca sĩ và 11 nữ ca sĩ. Hỏi có bao nhiêu cách để chọn một đôi song ca nam – nữ?

Nguồn: sytu.vn

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.