Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 trường THPT Nguyễn Tất Thành Đắk Nông

Nội dung Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 trường THPT Nguyễn Tất Thành Đắk Nông Bản PDF Đề thi giữa học kỳ 1 môn Toán lớp 10 năm 2023 - 2024 tại trường THPT Nguyễn Tất Thành Đắk Nông là một bài kiểm tra đa dạng với cả trắc nghiệm và tự luận. Bài thi gồm 35 câu trắc nghiệm và 3 câu tự luận, đề thi kéo dài trong 90 phút. Đề thi có mã đề 132 - 209 và đã được kèm đáp án.

Trong số các câu hỏi được đưa ra, có những bài toán thú vị như việc tính khoảng cách giữa hai tàu sau hai giờ xuất phát, hoặc tìm phương án sản xuất hộp giấy sao cho đạt hiệu quả tối ưu. Các câu hỏi trắc nghiệm cũng đa dạng, từ kiến thức cơ bản đến những kiến thức phức tạp.

Bài thi cũng đề cập đến kiến thức nền tảng của môn Toán và yêu cầu học sinh phải áp dụng kiến thức một cách linh hoạt và sáng tạo. Điều này giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic.

Với bài thi này, học sinh sẽ có cơ hội để thử thách bản thân, nâng cao kiến thức và kỹ năng giải quyết vấn đề. Đồng thời, đề thi cũng giúp giáo viên đánh giá được hiệu quả học tập của học sinh và điều chỉnh phương pháp dạy học trong tương lai. Hãy cùng nhau chăm chỉ ôn tập và chuẩn bị tốt cho kỳ thi sắp tới nhé!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Thái Phiên - Hải Phòng
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Thái Phiên – Hải Phòng mã đề 846 được biên soạn nhằm kiểm tra các chủ đề kiến thức: vectơ và các phép toán, tích vô hướng của hai vectơ và ứng dụng, đề kiểm tra gồm 2 trang được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 10 câu, chiếm 40% tổng số điểm, phần tự luận gồm 3 câu, chiếm 60% tổng số điểm, học sinh làm bài trong 45 phút. Trích dẫn đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Thái Phiên – Hải Phòng : + Khẳng định nào sau đây đúng? A. Hai véctơ được gọi là bằng nhau nếu chúng cùng độ dài. B. Hai véctơ được gọi là bằng nhau nếu chúng cùng phương và cùng độ dài. C. Hai véctơ được gọi là bằng nhau nếu chúng cùng hướng. D. Hai véctơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài. [ads] + Trong mặt phẳng tọa độ Oxy cho ba điểm A(-3;5), B(-4;-3), C(1;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. Tìm toạ độ điểm K thuộc trục hoành sao cho KA + KB nhỏ nhất. + Cho tứ giác ABCD không phải hình bình hành. Gọi M và N là hai điểm lần lượt chạy trên các đoạn thẳng AB, CD sao cho ND/NC = MB/MA. Gọi E, F, I lần lượt là trung điểm của đoạn thẳng AC, BD và MN. Chứng minh rằng ba điểm E, I, F thẳng hàng.
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Nhân Chính - Hà Nội
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Nhân Chính – Hà Nội mã đề 2 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận theo tỉ lệ điểm 6:4, phần trắc nghiệm khách quan gồm 15 câu hỏi, phần tự luận gồm 2 bài toán, thời gian làm bài 60 phút, đề nhằm kiểm tra các chủ để kiến thức: mệnh đề và tập hợp, vectơ và các phép toán, hàm số bậc nhất và hàm số bậc hai, kỳ kiểm tra diễn ra vào ngày 21/10/2018. Trích dẫn đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Nhân Chính – Hà Nội : + Cho parabol (P): y = – 2x^2 + x + 3 và các mệnh đề: I. (P) đi qua hai điểm A(2;-3); B(1;2). II. (P) cắt cả hai trục tọa độ. III. Tung độ đỉnh của (P) là 21/8. IV. (P) có trục đối xứng là đường thẳng y = 1/4. V. Hàm số đồng biến trên khoảng (-∞;1/4). Số mệnh đề SAI trong các mệnh đề trên là? [ads] + Cho bốn điểm phân biệt A, B, C, D thỏa mãn AB = CD. Khẳng định nào sau đây SAI? A. AB cùng hướng CD. B. AB cùng phương CD. C. |AB| = |CD|. D. ABDC là hình bình hành. + Cho tứ giác ABCD. Gọi M, N, E, F lần lượt là trung điểm AB, BC, CD, DA. Đặt ME + NF = AI. Chứng minh F là trung điểm của BI.
Đề kiểm tra giữa HKI Toán 10 năm 2018 - 2019 trường THPT Việt Nam - Ba Lan - Hà Nội
Đề kiểm tra giữa HKI Toán 10 năm 2018 – 2019 trường THPT Việt Nam – Ba Lan – Hà Nội mã đề 294 được biên soạn nhằm kiểm tra các kiến thức Toán 10 đã học, như: mệnh đề và tập hợp, hàm số bậc nhất và bậc hai, vectơ và các phép toán … đề gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài trong thời gian 90 phút. Trích dẫn đề kiểm tra giữa HKI Toán 10 năm 2018 – 2019 trường THPT Việt Nam – Ba Lan – Hà Nội : + Cho định lí “Nếu hai tam giác bằng nhau thì diện tích chúng bằng nhau”. Mệnh đề nào sau đây đúng? A. Hai tam giác bằng nhau là điều kiện cần và đủ để chúng có diện tích bằng nhau. B. Hai tam giác có diện tích bằng nhau là điều kiện đủ để chúng bằng nhau. C. Hai tam giác bằng nhau là điều kiện cần để diện tích chúng bằng nhau. D. Hai tam giác bằng nhau là điều kiện đủ để diện tích chúng bằng nhau. [ads] + Chọn mệnh đề sai? A. Nếu M là trung điểm AB thì MA + MB = 0. B. Nếu G là trọng tâm tam giác ABC thì với mọi I: IA+ IB + IC = 3IG. C. Nếu ABCD là hình chữ nhật thì AC = BD. D. Nếu ABCD là hình bình hành thì AD = BC. + Trong các phát biểu sau, phát biểu nào là mệnh đề đúng? A. Tổng của hai cạnh một tam giác lớn hơn cạnh thứ ba. B. Hình thang có hai cạnh bên bằng nhau là hình thang cân. C. Bạn có chăm học không? D. 7 là một số hữu tỉ.
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 - 2019 trường Nguyễn Tất Thành - ĐHSP Hà Nội
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường Nguyễn Tất Thành – ĐHSP Hà Nội gồm 1 trang được biên soạn theo hình thức tự luận với 6 câu hỏi và bài toán, thời gian làm bài 90 phút, đề bao hàm các kiến thức Toán 10 đã học như: mệnh đề và tập hợp, hàm số bậc nhất và hàm số bậc hai, vectơ và các phép toán, tích vô hướng của hai vectơ và ứng dụng. Trích dẫn đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường Nguyễn Tất Thành – TP. ĐHSP Hà Nội : + Trong mặt phẳng tọa độ Oxy cho M (3; -1), N (1; 2), P (2; -4). 1) Tìm toạ độ trọng tâm G của tam giác MNP và tọa độ điểm D sao cho MNGQ là hình bình hành. 2) Tam giác ABC nhận M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Tìm tọa độ các điểm A, B, C. [ads] + Tìm a, b, c để đồ thị hàm số y = ax^2 + bx + c là đường parabol có đỉnh I (2; -2) và đi qua điểm A (0; 2). + Cho tam giác ABC có trọng tâm G và hai điểm P, Q thỏa mãn PA = 2PB, 3QA = -2QC. Chứng minh rằng ba điểm P, Q, G thẳng hàng. Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O). Điểm M thuộc (O). Tìm giá trị lớn nhất, nhỏ nhất của MA + MB – MC.