Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho hàm số y = mx + 4m + 3 (m là tham số) có đồ thị là đường thẳng (d). Tìm điểm cố định mà đường thẳng (d) đi qua với mọi giá trị của m. + Cho tam giác nhọn ABC, các đường cao BE, CF. Gọi M là trung điểm của cạnh BC. a) Chứng minh MEF cân và AEF = ABC. b) Trên đoạn BE lấy điểm Q sao cho BFQ = CFE. Chứng minh BFQ đồng dạng với CFE và EF.BC + BF.CE = BE.CF. + Cho tam giác nhọn ABC. Gọi N là điểm bất kì trên đoạn thẳng BC (N khác B và C). Gọi các điểm H, K lần lượt là hình chiếu vuông góc của N trên cạnh AB, AC. Xác định vị trí của điểm N để đoạn thẳng HK có độ dài nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho hình vuông EFGH. Từ E, vẽ góc vuông xEy sao cho cạnh Ex cắt các đường thẳng FG và GH theo thứ tự ở M và N, còn cạnh Ey cắt hai đường thẳng trên lần lượt ở P và Q. a) Chứng minh rằng các tam giác EMQ và ENP là các tam giác vuông cân; b) Đường thẳng QM cắt NP ở R. Gọi I và K theo thứ tự là trung điểm của PN và QM. Tứ giác EKRI là hình gì? Vì sao? c) Chứng minh bốn điểm F, H, K, I thẳng hàng. + Cho biểu thức a) Rút gọn A; b) Tìm giá trị nguyên của x để A có giá trị nguyên. + Cho ba số a, b, c thỏa mãn điều kiện abc = 2017. Tính giá trị của biểu thức: P = 2 22 2017 2017 2017 2017 1.
Đề thi HSG cấp huyện Toán 8 năm 2016 - 2017 phòng GDĐT Cẩm Xuyên - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG cấp huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh. Trích dẫn đề thi HSG cấp huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh : + Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại Q. E là trung điểm của IQ, tia DE cắt BC tại F. Qua I vẽ đường thẳng song song với AD cắt DF tại H. Chứng minh rằng: a) Tứ giác IHQF là hình thoi. b) Tổng 1/DI2 + 1/DK2 không đổi khi I thay đổi trên cạnh AB. + Cho tam giác ABC vuông tại A có AB = 6cm và AC = 8cm. Gọi M là trung điểm của cạnh AB, N là trung điểm của cạnh AC. Tính độ dài đoạn thẳng MN. + Cho tam giác ABC vuông tại A, đường phân giác BD. Biết AD = 3 cm và DC = 5 cm. Tính độ dài AB và BC.
Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho hình vuông ABCD. Qua A vẽ hai đưởng thẳng d và d’ vuông góc với nhau. Biết d cắt BC và CD lần lượt tại R và S, d’ cắt BC và CD ở P và Q. a) Chứng minh các tam giác AQR và tam giác APS là các tam giác cân. b) QR cắt PS tại H. Gọi M và N lật lượt là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. c) Chứng minh MN là đường trung trực của AC. + Chứng minh rằng trong một hình thang cân, bình phương của đường chéo bằng bình phương của cạnh bên cộng với tích của hai đáy. + Tìm giá trị nhỏ nhất của biểu thức: M.
Đề thi HSG Toán 8 năm 2016 - 2017 phòng GDĐT Phù Ninh - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ : + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). 1. Chứng minh tam giác AMN vuông cân và AN2 = NC.NP. 2. Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD. 3. Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM2 + 1AQ2 không đổi khi điểm M thay đổi trên cạnh BC. + Tỉ số các cạnh bé nhất của hai tam giác đồng dạng bằng 2/5. Tính chu vi P và P’ của hai tam giác đó biết P’ – P = 18 cm. + Cho tam giác ABC có độ dài ba cạnh: AB = 20 cm, AC = 34 cm, BC = 42 cm. Diện tích của tam giác đó là?