Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Tam Khương Hà Nội

Nội dung Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Tam Khương Hà Nội Bản PDF - Nội dung bài viết Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 - 2023 trường THCS Tam Khương Hà Nội Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 - 2023 trường THCS Tam Khương Hà Nội Chào các thầy cô và các bạn học sinh lớp 9! Dưới đây là đề kiểm tra giữa học kì 2 môn Toán lớp 9 năm học 2022 – 2023 của trường THCS Tam Khương ở quận Đống Đa, thành phố Hà Nội. Mời các bạn cùng tham gia giải các bài toán thú vị sau: 1. Giải bài toán bằng cách lập phương hoặc hệ phương trình: Trong tháng thứ nhất, hai tổ sản xuất được 600 sản phẩm. Do cải tiến kĩ thuật, sang tháng thứ hai, tổ I vượt mức 10% và tổ II vượt mức 20%. Vì vậy, tháng thứ hai cả hai tổ sản xuất được 685 sản phẩm. Hỏi trong tháng thứ nhất mỗi tổ sản xuất được bao nhiêu sản phẩm? 2. Cho hàm số y = x^2 có đồ thị là parabol (P) và hàm số y = 2x + 3 có đồ thị là đường thẳng (d). a) Vẽ đồ thị hai hàm số trên cùng một hệ trục tọa độ Oxy. b) Gọi M và N là giao điểm của (d) với (P). Tính diện tích tam giác OMN. 3. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AM, AN tới đường tròn (M, N là các tiếp điểm). - Chứng minh: Bốn điểm A, M, O, N cùng thuộc một đường tròn. - Trên cung nhỏ MN lấy điểm B khác M, N và B không là điểm chính giữa cung MN. Tia AB cắt đường tròn (O) tại điểm thứ hai C. Chứng minh: AM² = AB.AC. - Gọi H là giao điểm của AO và MN. Chứng minh: AHB = ACO. Chúc các bạn có kỳ thi thành công và học tốt! Cảm ơn các thầy cô đã dành thời gian chấm bài. Hy vọng đề thi sẽ giúp các bạn ôn tập và củng cố kiến thức môn Toán hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa kỳ 2 Toán 9 năm 2020 - 2021 trường THCS Sơn Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giữa kỳ 2 Toán 9 năm học 2020 – 2021 trường THCS Sơn Đông, thị xã Sơn Tây, thành phố Hà Nội.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT Hà Đông - Hà Nội
Thứ Tư ngày 31 tháng 03 năm 2021, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa kì 2 môn Toán lớp 9 năm học 2020 – 2021. Đề thi giữa kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút.
Đề thi giữa HK2 Toán 9 năm 2020 - 2021 trường THCS Hoàng Hoa Thám - Hà Nội
Đề thi giữa HK2 Toán 9 năm 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội
Đề thi giữa kì 2 Toán 9 năm học 2020 – 2021 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 9 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội : + Hai bạn An và Tâm được phân công chuẩn bị tài liệu cho buổi thuyết trình trước lớp về ý nghĩa của “Giờ trái đất”. Biết rằng nếu hai bạn cùng làm thì sau 2 giờ 24 phút sẽ xong. Nhưng khi làm chung được 1 giờ thì Tâm có việc bận phải về, còn một mình An làm nốt trong 2 giờ 20 phút nữa mới xong. Hỏi nếu mỗi bạn làm một mình thì sau bao lâu sẽ xong công việc? + Cho các đường thẳng (d): y = -2x + 3; (d’): y = (m – 1)x + 2m – 1 và parabol (P): y = x2. a) Tìm tọa độ giao điểm của (d) và (P). b) Tìm m biết đường thẳng (d’) song song với đường thẳng (d). Khi đó, giả sử (d’) cắt Ox tại A, cắt Oy tại B. Tính diện tích tam giác OAB. c) Tìm m để (d’) cắt (P) tại 2 điểm phân biệt D, E sao cho trung điểm I của DE nằm trên Oy. + Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm); đường thẳng d đi qua A và cắt (O) tại C, D (C nằm giữa A và D). Gọi I là trung điểm của CD. a) Chứng minh các điểm A, B, I và O cùng nằm trên một đường tròn. b) Chứng minh AC.AD = AB2. c) Qua B kẻ đường thẳng vuông góc với OA, đường thẳng này cắt (O;R) tại E. Chứng minh AB là tiếp tuyến của (O;R) và góc BEA = 1/2 góc BIE. d) Khi đường thẳng d thay đổi sao cho BDE có ba góc nhọn, gọi H là trực tâm BDE. Tính OA theo R để H chạy trên đường tròn ngoại tiếp ABE.