Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Hoàng Việt

Tài liệu gồm 138 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nắm, các dạng toán thường gặp và bài tập tự luyện chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3. MỤC LỤC : Chương 3 . NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG 1. §1 – TÍNH NGUYÊN HÀM – SỬ DỤNG ĐỊNH NGHĨA, BẢNG CÔNG THỨC 1. A KIẾN THỨC CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Áp dụng bảng công thức nguyên hàm 2. + Dạng 2. Tách hàm dạng tích thành tổng 7. + Dạng 3. Tách hàm dạng phân thức thành tổng 9. C BÀI TẬP TỰ LUYỆN 14. §2 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 17. A CÁC DẠNG TOÁN THƯỜNG GẶP 17. + Dạng 1. Đổi biến dạng hàm lũy thừa 17. + Dạng 2. Đổi biến dạng hàm phân thức 19. + Dạng 3. Đổi biến dạng hàm vô tỉ 20. + Dạng 4. Đổi biến dạng hàm lượng giác 22. + Dạng 5. Đổi biến dạng hàm mũ, hàm lô-ga-rit 24. B BÀI TẬP TỰ LUYỆN 27. §3 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN 30. A CÁC DẠNG TOÁN THƯỜNG GẶP 30. + Dạng 1. Nguyên hàm từng phần với “u = đa thức” 30. + Dạng 2. Nguyên hàm từng phần với “u = lôgarit” 31. + Dạng 3. Nguyên hàm kết hợp đổi biến số và từng phần 33. + Dạng 4. Nguyên hàm từng phần dạng “lặp” 35. + Dạng 5. Nguyên hàm từng phần dạng “hàm ẩn” 36. B BÀI TẬP TỰ LUYỆN 38. §4 – TÍNH TÍCH PHÂN – SỬ DỤNG ĐỊNH NGHĨA, TÍNH CHẤT 41. A CÁC DẠNG TOÁN THƯỜNG GẶP 41. + Dạng 1. Sử dụng định nghĩa, tính chất tích phân 41. + Dạng 2. Tách hàm dạng tích thành tổng các hàm cơ bản 45. + Dạng 3. Tách hàm dạng phân thức thành tổng các hàm cơ bản 47. B BÀI TẬP TỰ LUYỆN 51. §5 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 54. A CÁC DẠNG TOÁN THƯỜNG GẶP 54. + Dạng 1. Đổi biến loại t = u(x) 54. + Dạng 2. Lượng giác hóa 59. B BÀI TẬP TỰ LUYỆN 61. §6 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN 65. A CÁC DẠNG TOÁN THƯỜNG GẶP 65. + Dạng 1. Tích phân từng phần với “u = đa thức” 65. + Dạng 2. Tích phân từng phần với “u = logarit” 67. B BÀI TẬP TỰ LUYỆN 70. §7 – TÍCH PHÂN HÀM ẨN 74. A CÁC DẠNG TOÁN THƯỜNG GẶP 74. + Dạng 1. Sử dụng tính chất tính phân không phụ thuộc biến 74. + Dạng 2. Tìm hàm f(x) bằng phương pháp đổi biến số 76. + Dạng 3. Tìm hàm f(x) bằng phương pháp đưa về “đạo hàm đúng” 77. + Dạng 4. Phương pháp tích phân từng phần 79. + Dạng 5. Phương pháp ghép bình phương 81. B BÀI TẬP TỰ LUYỆN 84. §8 – ỨNG DỤNG TÍCH PHÂN – TÍNH DIỆN TÍCH HÌNH PHẲNG 89. A CÁC DẠNG TOÁN THƯỜNG GẶP 89. + Dạng 1. Hình phẳng giới hạn bởi hai đồ thị y = f(x) và y = g(x) 89. + Dạng 2. Hình phẳng giới hạn bởi nhiều hơn hai đồ thị hàm số 97. + Dạng 3. Toạ độ hoá một số “mô hình” hình phẳng thực tế 99. B BÀI TẬP TỰ LUYỆN 103. §9 – ỨNG DỤNG TÍCH PHÂN – TÍNH THỂ TÍCH VẬT THỂ, KHỐI TRÒN XOAY 107. A CÁC DẠNG TOÁN THƯỜNG GẶP 107. + Dạng 1. Tính thể tích vật thể khi biết diện tích mặt cắt vuông góc với Ox 107. + Dạng 2. Tính thể tích của khối tròn xoay khi cho hình phẳng quay quanh trục Ox 108. + Dạng 3. Tọa độ hóa một số bài toán thực tế 113. B BÀI TẬP TỰ LUYỆN 117. §10 – ỨNG DỤNG TÍCH PHÂN – MỘT SỐ BÀI TOÁN CHUYỂN ĐỘNG 120. A CÁC DẠNG TOÁN THƯỜNG GẶP 120. + Dạng 1. Cho hàm vận tốc, tìm quãng đường di chuyển của vật 120. + Dạng 2. Cho đồ thị hàm vận tốc, tìm quãng đường di chuyển của vật 121. + Dạng 3. Cho hàm gia tốc, tìm quãng đường di chuyển của vật 122. B BÀI TẬP TỰ LUYỆN 124. §11 – ĐỀ TỔNG ÔN 126. A ĐỀ SỐ 1 126. B ĐỀ SỐ 2 129.

Nguồn: toanmath.com

Đọc Sách

Nắm trọn chuyên đề nguyên hàm, tích phân và ứng dụng ôn thi THPT QG môn Toán
Tài liệu gồm 409 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp các dạng bài tập thường gặp về chuyên đề nguyên hàm, tích phân và ứng dụng, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 ôn tập hướng đến kỳ thi tốt nghiệp THPT Quốc gia môn Toán năm học 2023 – 2024. CHỦ ĐỀ 1 . NGUYÊN HÀM CỦA HÀM SỐ CƠ BẢN. Dạng 1: Nguyên hàm của hàm số cơ bản. Dạng 2: Nguyên hàm của hàm số phân thức hữu tỷ. Dạng 3: Tìm nguyên hàm thỏa mãn điều kiện cho trước. Dạng 4: Tìm nguyên hàm bằng phương pháp đổi biến số. Dạng 5: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. Dạng 6: Nguyên hàm hàm ẩn. CHỦ ĐỀ 2 . TÍCH PHÂN CỦA HÀM SỐ CƠ BẢN. Dạng 7: Tích phân của hàm số cơ bản. Dạng 8: Tính tích phân bằng phương pháp đổi biến. Dạng 9: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 10: Tích phân hàm ẩn và tích phân đặc biệt. Dạng 11: Tính tích phân bằng phương pháp vi phân. Dạng 12: Ứng dụng của tích phân tính diện tích hình phẳng. Dạng 13: Ứng dụng tích phân vào bài toán chuyển động.
Tài liệu chuyên đề ứng dụng của tích phân trong hình học
Tài liệu gồm 222 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề ứng dụng của tích phân trong hình học, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 3 . ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. DIỆN TÍCH HÌNH PHẲNG: + Dạng 1. Ứng dụng tích phân tính diện tích hình phẳng giới hạn bởi y = f(x), trục Ox, x = a và x = b. + Dạng 2. Ứng dụng tích phân tính diện tích hình phẳng giới hạn bởi y = f(x), y = g(x), x = a và x = b. + Dạng 3. Ứng dụng tích phân tính diện tích hình phẳng giới hạn bởi y = f(x) và y = g(x). THỂ TÍCH VẬT THỂ TRÒN XOAY: + Dạng 1. Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường y = f(x), trục hoành và hai đường thẳng x = a, x = b quanh trục Ox. + Dạng 2. Thể tích khối tròn xoay sinh bởi hình phẳng giới hạn bởi các đường y = f(x), y = g(x), x = a và x = b khi quay quanh trục Ox. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Dạng 1. Ứng dụng tích phân để tính diện tích. + Dạng 2. Ứng dụng tích phân để tính thể tích. 3. Hệ thống bài tập trắc nghiệm mức độ vận dụng – vận dụng cao (VD – VDC).
Tài liệu chuyên đề tích phân và một số phương pháp tính tích phân
Tài liệu gồm 159 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề tích phân và một số phương pháp tính tích phân, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 2 . TÍCH PHÂN. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Sử dụng định nghĩa tích phân. + Dạng 2. Sử dụng tính chất tích phân. + Dạng 3. Sử dụng tính chất chèn cận để tính tích phân. + Dạng 4. Sử dụng định nghĩa tích phân vào các bài toán khác. + Dạng 5. Phương pháp đổi biến số loại 1 để tính tích phân. + Dạng 6. Phương pháp đổi biến số loại 2 để tính tích phân. + Dạng 7. Phương pháp từng phần để tính tích phân. + Dạng 8. Kỹ thuật tích phân từng phần hàm ẩn. + Dạng 9. Tính tích phân dựa vào tính chất. + Dạng 10. Kỹ thuật phương trình hàm. + Dạng 11. Kỹ thuật biến đổi. + Dạng 12. Kỹ thuật đạo hàm đúng. + Dạng 13. Kỹ thuật đưa về bình phương loại 1. + Dạng 14. Kỹ thuật đưa về bình phương loại 2 – kỹ thuật Holder. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Tích phân hàm số hữu tỷ. + Tích phân đổi biến. + Tích phân từng phần. 3. Hệ thống bài tập trắc nghiệm mức độ vận dụng – vận dụng cao (VD – VDC). + Dạng 1. Tích phân hàm ẩn. + Dạng 2. Tích phân một số hàm đặc biệt.
Tài liệu chuyên đề nguyên hàm và một số phương pháp tìm nguyên hàm
Tài liệu gồm 159 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề nguyên hàm và một số phương pháp tìm nguyên hàm, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 1 . NGUYÊN HÀM. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Phương pháp đổi biến số. + Dạng 2. Phương pháp nguyên hàm từng phần. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Dạng 1. Nguyên hàm cơ bản. + Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số. + Dạng 3. Nguyên hàm của hàm số hữu tỉ. + Dạng 4. Phương pháp nguyên hàm từng phần. 3. Bài tập trắc nghiệm mức độ vận dụng – vận dụng cao (VD – VDC). + Dạng 1. Bài toán tích phân liên quan đến đẳng thức: u(x).f'(x) + u'(x).f(x) = h(x). + Dạng 2. Bài toán tích phân liên quan đến biểu thức: f'(x) + f(x) = h(x). + Dạng 3. Bài toán tích phân liên quan đến biểu thức: f'(x) – f(x) = h(x). + Dạng 4. Bài toán tích phân liên quan đến biểu thức: f'(x) + p(x).f(x) = h(x). + Dạng 5. Bài toán tích phân liên quan đến biểu thức: f'(x) + p(x).f(x) = 0. + Dạng 6. Bài toán tích phân liên quan đến biểu thức: f'(x) + p(x).[f(x)]^n = 0.