Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2019 2020 trường THCS Bình Tây TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2019 2020 trường THCS Bình Tây TP HCM Bản PDF - Nội dung bài viết Đề thi học kì 2 Toán lớp 9 năm học 2019 – 2020 trường THCS Bình Tây – TP HCM Đề thi học kì 2 Toán lớp 9 năm học 2019 – 2020 trường THCS Bình Tây – TP HCM Sytu xin giới thiệu đến quý thầy cô giáo và các em học sinh đề thi học kì 2 môn Toán lớp 9 năm học 2019 – 2020 trường THCS Bình Tây, quận 6, thành phố Hồ Chí Minh. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 9 năm 2019 – 2020 trường THCS Bình Tây – TP HCM: 1. Cho phương trình : \(2x^2 - 6x + 4 = 0\) a) Chứng minh phương trình có hai nghiệm phân biệt x1 và x2, sau đó tính tổng và tích hai nghiệm. b) Không giải phương trình, hãy tính giá trị của biểu thức sau. 2. Một trường THCS có 365 học sinh đi tham quan, phải đi bằng thuyền. Có hai loại thuyền, loại thứ nhất chở được 24 người, loại thứ hai chở được 35 người. Hỏi cần phải điều bao nhiêu thuyền mỗi loại để không chở quá số người cho phép và cũng không chở ít hơn số người cho phép. Tổng số thuyền của cả hai loại là 12 thuyền. 3. Có hai lọ thủy tinh hình trụ, lọ thứ nhất bên trong có bán kính đáy 15 cm, chiều cao 20 cm, lọ thứ hai bên trong có bán kính đáy 20 cm, chiều cao 12 cm. Nếu đổ hết nước từ lọ thứ nhất sang lọ thứ hai, nước có tràn ra ngoại không? Tại sao? File WORD đề thi (dành cho quý thầy, cô): Đề thi đã được chuẩn bị và sẵn sàng để thầy cô sử dụng trong quá trình giảng dạy. Hãy tận dụng tài liệu này để giúp học sinh chuẩn bị tốt cho kì thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 2 Toán 9 năm 2019 - 2020 trường THCS Nguyễn Du - TP HCM
Thứ Ba ngày 02 tháng 06 năm 2020, trường THCS Nguyễn Du, quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kỳ 2 (HK2) năm học 2019 – 2020. Đề thi học kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Nguyễn Du – TP HCM gồm 01 trang với 06 bài toán tự luận, thời gian làm bài thi là 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Nguyễn Du – TP HCM : + Hai trường THCS A và B có tất cả 1250 thí sinh dự thi vào lớp 10 THPT. Biết rằng nếu tỉ lệ trúng tuyển vào lớp 10 của trường A và trường B lần lượt là 80% và 85% thì trường A trúng tuyển nhiều hơn trường B là 10 thí sinh. Tính số thí sinh dự thi vào lớp 10 THPT của mỗi trường. [ads] + Đổ nước vào một chiếc thùng hình trụ có bán kính 20cm. Nếu nghiêng thùng sao cho mặt nước chạm miệng thùng và đáy thùng (như hình vẽ) thì mặt nước tạo với đáy thùng một góc ACB = 45°. Em hãy cho biết diện tích xung quanh và thể tích của thùng (thể tích tính theo lít) (biết hình trụ có bán kính đáy là R, chiều cao h thì diện tích xung quanh được tính bởi công thức Sxq = 2Rh và thể tích V được tính bởi công thức V = piR^2h với pi = 3,14). + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. a. Chứng minh rằng các tứ giác BFEC, CEHD nội tiếp đường tròn. b. Đường thẳng EF cắt đường tròn (O) tại các điểm I, K (I thuộc cung nhỏ AB). Gọi xy là tiếp tuyến tại A của đường tròn (O). Chứng minh: OA vuông góc với IK và AK^2 = AE.AC. c. Gọi S là tâm đường tròn ngoại tiếp tứ giác BFEC. Qua S vẽ đường vuông góc với HS, đường thẳng này cắt các đường thẳng AB, AH, AC lần lượt tại P, G và Q. Chứng minh: G là trung điểm của PQ.
Đề thi học kỳ 2 Toán 9 năm 2019 - 2020 phòng GDĐT Cầu Giấy - Hà Nội
Thứ Năm ngày 04 tháng 06 năm 2020, phòng Giáo dục và Đào tạo quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi kiểm tra học kỳ 2 (HK2) môn Toán lớp 9 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 9 năm 2019 – 2020 phòng GD&ĐT Cầu Giấy – Hà Nội gồm 05 bài toán, đề thi gồm có 01 trang, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2019 – 2020 phòng GD&ĐT Cầu Giấy – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đoàn xe vận tải dự định sử dụng một số xe cùng loại để chuyên chở 90 tấn thiết bị y tế. Để đáp ứng kịp nhu cầu phục vụ công tác phòng chống dịch Covid-19 đoàn được bổ sung thêm 5 chiếc xe cùng loại. Do đó mỗi xe chở ít hơn dự định ban đầu là 0,2 tấn. Biết khối lượng hàng mỗi xe chuyên chở như nhau, hỏi ban đầu đoàn xe có bao nhiêu chiếc? [ads] + Một lọ thuốc hình trụ có chiều cao 10cm và bán kính đáy 5cm. Nhà sản xuất phủ kín mặt xung quanh của lọ thuốc bằng giấy in các thông tin về loại thuốc đó. Hãy tính diện tích phần giấy cần dùng của lọ thuốc đó (cho biết độ dày của giấy in và lọ thuốc không đáng kể)? + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R). Các đường cao BD và CE cắt nhau tại H. 1) Chứng minh ADHE là tứ giác nội tiếp. 2) Kẻ đường kính AK. Chứng minh CK // BH và tứ giác BHCK là hình bình hành. 3) Gọi I là trung điểm của BC, G là giao điểm của AI và OH. a. Chứng minh G là trọng tâm tam giác AHK. b. Cho B, C cố định, khi A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn thì G chuyển động trên đường nào? Tại sao?
Đề thi học kỳ 2 Toán 9 năm 2019 - 2020 phòng GDĐT Hoàng Mai - Hà Nội
Thứ Năm ngày 04 tháng 06 năm 2020, phòng Giáo dục và Đào tạo quận Hoàng Mai, thành phố Hà Nội tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 9 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 9 năm học 2019 – 2020 phòng GD&ĐT Hoàng Mai – Hà Nội gồm 05 bài toán dạng tự luận, đề thi có 01 trang, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2019 – 2020 phòng GD&ĐT Hoàng Mai – Hà Nội : + Quãng đường AB dài 6km. Một người đi xe đạp từ A đến B với vận tốc không đổi. Khi từ B trở về A người đó giảm vận tốc 3km/h so với lúc đi từ A đến B. Biết thời gian lúc đi ít hơn thời gian lúc về là 6 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. [ads] + Một hộp sửa hình trụ có chiều cao là 12cm, bán kính đáy là 4cm như hình vẽ bên. Tính diện tích vật liệu cần dùng để tạo nên vỏ hộp sữa đó (không tính phần ghép nối). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ đường kính AD của đường tròn (O). Tiếp tuyến tại điểm D của đường tròn (O) cắt đường thẳng BC tại điểm K. Tia KD cắt AB tại điểm M, cắt AC tại điểm N. Gọi H là trung điểm của đoạn thẳng BC. 1) Chứng minh CBD = CDK và KD^2 = KB.KC. 2) Chứng minh tứ giác OHDK nội tiếp và AON = BHD. 3) Chứng minh OM = ON.
Đề thi HK2 Toán 9 năm học 2019 - 2020 trường THPT chuyên Hà Nội - Amsterdam
Tháng 05 năm 2020, trường THPT chuyên Hà Nội – Amsterdam tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 2 môn Toán lớp 9 năm học 2019 – 2020. Đề thi HK2 Toán 9 năm học 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam gồm 05 bài toán, thời gian làm bài 90 phút.