Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kì 1 Toán 10 năm 2023 - 2024 trường THPT Nguyễn Bính - Nam Định

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát giữa học kì 1 môn Toán 10 năm học 2023 – 2024 trường THPT Nguyễn Bính, tỉnh Nam Định; đề thi có đáp án và thang điểm. Trích dẫn Đề giữa học kì 1 Toán 10 năm 2023 – 2024 trường THPT Nguyễn Bính – Nam Định : + Trong các câu sau, câu nào là mệnh đề? A. Bạn có làm bài tốt không? B. Không được gian lận trong kiểm tra. C. Hãy đi nhanh lên! D. Quảng Ngãi là một tỉnh thuộc miền nam Việt Nam. + Bác Ba có một mảnh đất rộng 6 ha. Bác dự tính trồng cà chua và ngô cho mùa vụ sắp tới. Nếu trồng cà chua thì bác Ba cần 20 ngày để trồng một ha. Nếu trồng ngô thì bác Ba cần 10 ngày để trồng một ha. Biết rằng mỗi ha cà chua sau thu hoạch bán được 50 triệu đồng, mỗi ha ngô sau thu hoạch bán được 30 triệu đồng và bác Ba chỉ còn 100 ngày để canh tác cho kịp mùa vụ. Giả sử bác Ba trồng x ha cà chua và y ha ngô. a) Viết các bất phương trình theo x y, biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó. b) Số tiền nhiều nhất mà bác Ba có thể thu được sau mùa vụ này là bao nhiêu? + Khi máy bay nghiêng cánh một góc o α 45 lực F của không khí tác động vuông góc với cánh và bằng tổng của lực nâng F1 và lực cản F2 (Hình 8). Biết cường độ của lực F bằng a. Tính cường độ của lực 1 2 F 2 theo a.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Thái Phiên - Hải Phòng
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Thái Phiên – Hải Phòng mã đề 846 được biên soạn nhằm kiểm tra các chủ đề kiến thức: vectơ và các phép toán, tích vô hướng của hai vectơ và ứng dụng, đề kiểm tra gồm 2 trang được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 10 câu, chiếm 40% tổng số điểm, phần tự luận gồm 3 câu, chiếm 60% tổng số điểm, học sinh làm bài trong 45 phút. Trích dẫn đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Thái Phiên – Hải Phòng : + Khẳng định nào sau đây đúng? A. Hai véctơ được gọi là bằng nhau nếu chúng cùng độ dài. B. Hai véctơ được gọi là bằng nhau nếu chúng cùng phương và cùng độ dài. C. Hai véctơ được gọi là bằng nhau nếu chúng cùng hướng. D. Hai véctơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài. [ads] + Trong mặt phẳng tọa độ Oxy cho ba điểm A(-3;5), B(-4;-3), C(1;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. Tìm toạ độ điểm K thuộc trục hoành sao cho KA + KB nhỏ nhất. + Cho tứ giác ABCD không phải hình bình hành. Gọi M và N là hai điểm lần lượt chạy trên các đoạn thẳng AB, CD sao cho ND/NC = MB/MA. Gọi E, F, I lần lượt là trung điểm của đoạn thẳng AC, BD và MN. Chứng minh rằng ba điểm E, I, F thẳng hàng.
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Nhân Chính - Hà Nội
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Nhân Chính – Hà Nội mã đề 2 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận theo tỉ lệ điểm 6:4, phần trắc nghiệm khách quan gồm 15 câu hỏi, phần tự luận gồm 2 bài toán, thời gian làm bài 60 phút, đề nhằm kiểm tra các chủ để kiến thức: mệnh đề và tập hợp, vectơ và các phép toán, hàm số bậc nhất và hàm số bậc hai, kỳ kiểm tra diễn ra vào ngày 21/10/2018. Trích dẫn đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Nhân Chính – Hà Nội : + Cho parabol (P): y = – 2x^2 + x + 3 và các mệnh đề: I. (P) đi qua hai điểm A(2;-3); B(1;2). II. (P) cắt cả hai trục tọa độ. III. Tung độ đỉnh của (P) là 21/8. IV. (P) có trục đối xứng là đường thẳng y = 1/4. V. Hàm số đồng biến trên khoảng (-∞;1/4). Số mệnh đề SAI trong các mệnh đề trên là? [ads] + Cho bốn điểm phân biệt A, B, C, D thỏa mãn AB = CD. Khẳng định nào sau đây SAI? A. AB cùng hướng CD. B. AB cùng phương CD. C. |AB| = |CD|. D. ABDC là hình bình hành. + Cho tứ giác ABCD. Gọi M, N, E, F lần lượt là trung điểm AB, BC, CD, DA. Đặt ME + NF = AI. Chứng minh F là trung điểm của BI.
Đề kiểm tra giữa HKI Toán 10 năm 2018 - 2019 trường THPT Việt Nam - Ba Lan - Hà Nội
Đề kiểm tra giữa HKI Toán 10 năm 2018 – 2019 trường THPT Việt Nam – Ba Lan – Hà Nội mã đề 294 được biên soạn nhằm kiểm tra các kiến thức Toán 10 đã học, như: mệnh đề và tập hợp, hàm số bậc nhất và bậc hai, vectơ và các phép toán … đề gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài trong thời gian 90 phút. Trích dẫn đề kiểm tra giữa HKI Toán 10 năm 2018 – 2019 trường THPT Việt Nam – Ba Lan – Hà Nội : + Cho định lí “Nếu hai tam giác bằng nhau thì diện tích chúng bằng nhau”. Mệnh đề nào sau đây đúng? A. Hai tam giác bằng nhau là điều kiện cần và đủ để chúng có diện tích bằng nhau. B. Hai tam giác có diện tích bằng nhau là điều kiện đủ để chúng bằng nhau. C. Hai tam giác bằng nhau là điều kiện cần để diện tích chúng bằng nhau. D. Hai tam giác bằng nhau là điều kiện đủ để diện tích chúng bằng nhau. [ads] + Chọn mệnh đề sai? A. Nếu M là trung điểm AB thì MA + MB = 0. B. Nếu G là trọng tâm tam giác ABC thì với mọi I: IA+ IB + IC = 3IG. C. Nếu ABCD là hình chữ nhật thì AC = BD. D. Nếu ABCD là hình bình hành thì AD = BC. + Trong các phát biểu sau, phát biểu nào là mệnh đề đúng? A. Tổng của hai cạnh một tam giác lớn hơn cạnh thứ ba. B. Hình thang có hai cạnh bên bằng nhau là hình thang cân. C. Bạn có chăm học không? D. 7 là một số hữu tỉ.
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 - 2019 trường Nguyễn Tất Thành - ĐHSP Hà Nội
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường Nguyễn Tất Thành – ĐHSP Hà Nội gồm 1 trang được biên soạn theo hình thức tự luận với 6 câu hỏi và bài toán, thời gian làm bài 90 phút, đề bao hàm các kiến thức Toán 10 đã học như: mệnh đề và tập hợp, hàm số bậc nhất và hàm số bậc hai, vectơ và các phép toán, tích vô hướng của hai vectơ và ứng dụng. Trích dẫn đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường Nguyễn Tất Thành – TP. ĐHSP Hà Nội : + Trong mặt phẳng tọa độ Oxy cho M (3; -1), N (1; 2), P (2; -4). 1) Tìm toạ độ trọng tâm G của tam giác MNP và tọa độ điểm D sao cho MNGQ là hình bình hành. 2) Tam giác ABC nhận M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Tìm tọa độ các điểm A, B, C. [ads] + Tìm a, b, c để đồ thị hàm số y = ax^2 + bx + c là đường parabol có đỉnh I (2; -2) và đi qua điểm A (0; 2). + Cho tam giác ABC có trọng tâm G và hai điểm P, Q thỏa mãn PA = 2PB, 3QA = -2QC. Chứng minh rằng ba điểm P, Q, G thẳng hàng. Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O). Điểm M thuộc (O). Tìm giá trị lớn nhất, nhỏ nhất của MA + MB – MC.