Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bắc Giang

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bắc Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Giang đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang bao gồm 02 trang với 20 câu hỏi trắc nghiệm và 05 câu hỏi tự luận. Thời gian làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang: + Một công ty X dự định điều động một số xe để chở 100 tấn hàng. Khi sắp khởi hành thì 5 xe được điều đi làm việc khác nên mỗi xe còn lại phải chở thêm 1 tấn hàng so với dự định. Hỏi số xe mà công ty X dự định điều động, biết mỗi xe chở khối lượng hàng như nhau. + Cho đường tròn tâm O, bán kính R = 3cm. Gọi A, B là hai điểm phân biệt cố định trên đường tròn (O;R) (AB không là đường kính). Trên tia đối của tia BA lấy một điểm M (M khác B). Qua M kẻ hai tiếp tuyến MC, MD với đường tròn đã cho (C, D là hai tiếp điểm). a) Chứng minh tứ giác OCMD nội tiếp trong một đường tròn. b) Khi CMD = 60 độ, chứng minh rằng điểm E trên đường tròn là trọng tâm của tam giác MCD. c) Tìm vị trí của điểm M để tứ giác MPNQ có diện tích nhỏ nhất khi M di chuyển trên tia đối của tia BA. + Cho đoạn thẳng AC, B là điểm thuộc đoạn AC sao cho BC = 3BA. Gọi AT là một tiếp tuyến của đường tròn đường kính BC (T là tiếp điểm), BC = 6 cm. Độ dài đoạn thẳng AT bằng?

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2022 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm 2022 trường THCS & THPT Nguyễn Tất Thành, Đại học Sư phạm Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 trường Nguyễn Tất Thành – Hà Nội : + Để đo độ rộng của một khúc sông, bạn Nam đi dọc bờ sông từ vị trí A đến vị trí B cách nhau một khoảng d và tiến hành đo đạc các góc nghiêng a, b so với bờ sông từ các vị trí A, B đến vị trí C bên bờ sông đối diện (Hình 1). Biết d = 50m, a = 27°, B = 45°. Tính độ rộng h của khúc sông (làm tròn đến mét). + Từ một miếng tồn hình tròn, bạn Nam cắt ra được một vật nhọn hình tam giác cân ABC có AB = AC = 15cm và BC = 18cm (Hình 2). Tính bán kính của miếng tồn. + Một biển báo giao thông có dạng hình tròn, đường kính 70cm, được sơn một mặt bởi hai màu đỏ và trắng (phần tô đậm sơn màu đỏ, phần còn lại sơn màu trắng) (Hình 3). Phần được sơn màu trắng là một hình chữ nhật có các kích thước là 10cm và 50cm. Biết rằng, để sơn 1m2 màu đỏ cần chi phí là 250 000 đồng, để sơn 1m2 màu trắng cần chi phí là 200 000 đồng. Hỏi số tiền (làm tròn đến đơn vị nghìn đồng) để sơn toàn bộ biển báo trên bằng bao nhiêu? Cho pi = 3,14.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Giang; kỳ thi được diễn ra vào ngày 15 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Hà Giang : + Tìm m để phương trình x2 + 2mx – 2m – 6 = 0 (m là tham số) có hai nghiệm x1, x2 sao cho x12 + x22 đạt giá trị nhỏ nhất. + Tìm nghiệm nguyên của phương trình (2x + y)(x – y) + x + 8y = 22. + Cho đường tròn (O) đường kính BC và H là một điểm nằm trên đoạn thẳng BO (điểm H không trùng với hai điểm B và O). Qua H vẽ đường thẳng vuông góc với BC, cắt đường tròn (O) tại A và D. Gọi M là giao điểm của AC và BD, qua M vẽ đường thẳng vuông góc với BC tại N. a) Chứng minh rằng MNBA là tứ giác nội tiếp. b) Chứng minh rằng 2BH.BO = AB2, từ đó tính giá trị của P. c) Từ B vẽ tiếp tuyến với đường tròn (O), cắt hai đường thẳng AC và AN lần lượt tại K và E. Chứng minh rằng đường thẳng EC luôn đi qua trung điểm I của đoạn thẳng AH khi điểm H di động trên đoạn thẳng BO.
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Cao Bằng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Cao Bằng; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Cao Bằng : + Cho Parabol (P): y = mx2 và đường thẳng (d): y = 2x – m2 (m là tham số m > 0). Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A và B. Chứng minh rằng khi đó hai điểm A, B nằm bên phải trục tung. + Cho nửa đường tròn (O;R) đường kính AB. Đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M (M khác A và B). Tia AM cắt đường thẳng d tại C. Gọi I là trung điểm của AM, tia IO cắt đường thẳng d tại N. a) Chứng minh rằng tứ giác OBCI nội tiếp. b) Chứng minh AI.IC = IO.IN. c) Gọi E là hình chiếu của O trên AN. Chứng minh rằng? d) Xác định vị trí của điểm M để 2AM + AC đạt giá trị nhỏ nhất. + Cho hệ phương trình (m là tham số). Tìm các giá trị nguyên của m để hệ phương trình đã cho có nghiệm duy nhất (x;y) sao cho biểu thức A = 3x – y nhận giá trị nguyên.
Đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022 - 2023 sở GDĐT Tiền Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tiền Giang; kỳ thi được diễn ra vào ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022 – 2023 sở GD&ĐT Tiền Giang : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = ax2 qua M(3;3) và đường thẳng (d): y = -1/2.x + m (với m là tham số). Xác định phương trình của parabol (P), từ đó tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A(xA;yA), B(xB;yB) khác gốc tọa độ sao cho? + Gọi x1, x2 là hai nghiệm của phương trình x2 + mx + 1 = 0 và x3, x4 là hai nghiệm của phương trình x2 + nx + 1 = 0 với m và n là các tham số thỏa mãn. Chứng minh rằng. 3) Cho hai số x và y liên hệ với nhau bởi đẳng thức. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = x – y + 2. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn tâm O, có ba đường cao AD, BE, CF (D thuộc BC, E thuộc AC, F thuộc AB) cắt nhau tại H. Tia AO cắt BC tại M và cắt (O) tại N; gọi P, Q lần lượt là hình chiếu của M trên AB, AC. Chứng minh: 1) DH là tia phân giác của EDF. 2) HE/HF = NB/NC. 3) HE.MQ.HB = HF.MP.NC.