Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm 2019 2020 trường chuyên Thăng Long Lâm Đồng

Ngày … tháng 12 năm 2019, trường THPT chuyên Thăng Long, thành phố Đà Lạt, tỉnh Lâm Đồng tổ chức kì thi kiểm tra khảo sát chất lượng môn Toán lớp 11 giai đoạn cuối học kì 1 năm học 2019 – 2020. Đề thi HK1 Toán 11 năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng mã đề 143 gồm có 4 trang, đề được biên soạn theo dạng trắc nghiệm kết hợp tự luận theo tỉ lệ điểm 70 : 30. phần trắc nghiệm gồm 35 câu, phần tự luận gồm 3 câu, học sinh có 90 phút để hoàn thành bài thi học kì, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng : + Vào ngày 13/12/2019, một trung tâm anh văn tổ chức kỳ thi IELTS cho 6 thí sinh bao gồm bốn phân môn LISTENING, READING, WRITING và SPEAKING. Ở phần thi SPEAKING chỉ có một phòng thi và một giám khảo, các thí sinh phải lần lượt thực hiện phần thi của mình. Hỏi có bao nhiêu cách xếp thứ tự thi cho 6 thí sinh tham dự phần thi SPEAKING? + Nhân dịp kỷ niệm 37 năm ngày nhà giáo Việt Nam 20/11, các bạn học sinh lớp 11 Toán trường THPT chuyên Thăng Long – Lâm Đồng bàn bạc và đưa ra quyết định tặng cho 12 giáo viên bộ môn mỗi người một quyển sách. Để chuẩn bị, lớp đã liệt kê ra được 20 quyển sách thích hợp có tựa đề khác nhau. Hỏi có bao nhiêu cách để các bạn lớp 11 Toán chọn quà để tặng cho quý thầy cô mà không có hai thầy cô nào nhận được sách có tựa đề giống nhau? [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Hai đường tròn bất kỳ luôn đồng dạng. B. Hai hình vuông bất kỳ luôn đồng dạng. C. Hai tam giác đều bất kỳ luôn đồng dạng. D. Hai tam giác vuông bất kỳ luôn đồng dạng. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với đáy lớn AD. Gọi I, J, K lần lượt là trung điểm của SA, SD và SC. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (IJK) là hình gì? A. Tam giác. B. Hình thang cân. C. Hình thang không cân. D. Hình bình hành. + Trong mặt phẳng, cho hai điểm A và B. Trên đoạn thẳng AB, lấy điểm I sao cho AB = 4AI. Khẳng định nào sau đây đúng? A. Phép vị tự tâm I tỉ số k = 4 biến điểm A thành điểm B. B. Phép vị tự tâm I tỉ số k = −4 biến điểm A thành điểm B. C. Phép vị tự tâm I tỉ số k = 3 biến điểm A thành điểm B. D. Phép vị tự tâm I tỉ số k = −3 biến điểm A thành điểm B.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) ban cơ bản trường Chu Văn An Hà Nội 2014 2015
Nội dung Đề thi học kì 1 (HK1) ban cơ bản trường Chu Văn An Hà Nội 2014 2015 Bản PDF Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có đáp án và thang điểm Trích một số bài toán trong đề: + Từ các chữ số thuộc tập hợp A = {0,1,2,3,4,5}, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và chữ số 2? + Gieo một con súc sắc 3 lần liên tiếp. Tính xác suất để trong 3 lần gieo có ít nhất 2 lần mặt xuất hiện là 6 chấm. + Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(1; -1) và đường thẳng d: 2x – 3y – 2 = 0. Viết phương trình đường thẳng d ‘ là ảnh của đường thẳng d qua phép đối xứng tâm A. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh SA, CD. 1. Tìm giao tuyến của hai mặt phẳng (EFD) và (SAB). 2. Xác định giao điểm của đường thẳng EF với mặt phẳng (SBD).
Đề thi học kì 1 (HK1) ban nâng cao trường Chu Văn An Hà Nội 2013 2014
Nội dung Đề thi học kì 1 (HK1) ban nâng cao trường Chu Văn An Hà Nội 2013 2014 Bản PDF Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 6 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề thi: + Có 4 đồ vật đôi một khác nhau được chia hết cho ba người. Hỏi có bao nhiêu cách chia để mỗi người có ít nhất một đồ vật. + Gieo một con súc sắc (được chế tạo cân đối, đồng chất) hai lần liên tiếp. Tính xác suất để tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo là một số lẻ. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. M và N lần lượt là trung điểm các cạnh SA, CD. 1. Chứng minh MN song song với mặt phẳng (SBC). 2. (a) là mặt phẳng qua M, song song với AN và SC. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (a). 3. Mặt phẳng (a) cắt đường thẳng SB tại I. Tính tỉ số IS/IB
Đề thi học kì 1 (HK1) ban cơ bản trường Chu Văn An Hà Nội 2013 2014
Nội dung Đề thi học kì 1 (HK1) ban cơ bản trường Chu Văn An Hà Nội 2013 2014 Bản PDF Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 3 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề: + Một đội văn nghệ của trường có 8 tiết mục múa hát và 4 tiết mục kịch. Hỏi có bao nhiêu cách chọn 5 tiết mục đi dự thi trong đó có ít nhất 2 tiết mục kịch. + Có hai hộp cầu, mỗi hộp chứa 15 quả cầu được đánh số từ 1 đến 15. Lấy ngẫu nhiên từ mỗi hộp một quả cầu. Tính xác suất để tích số trên hai quả cầu thỏa mãn: a. là một số lẻ. b. là một số chia hết cho 6. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trọng tâm của tam giác SAB và SAD. 1. Chứng minh rằng MN song song với mặt phẳng (ABCD). 2. P là trung điểm của BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (MNP). 3. Gọi Q là giao điểm của SB và mặt phẳng (MNP). Tính tỉ số SQ/SB
Đề thi học kì 1 (HK1) trường THPT Thị Xã Quảng Trị 2014 2015
Nội dung Đề thi học kì 1 (HK1) trường THPT Thị Xã Quảng Trị 2014 2015 Bản PDF Đề thi HK1 lớp 11 trường THPT Thị Xã Quảng Trị năm học 2014 – 2015 gồm 5 bài toán. Trích một số bài toán trong đề thi: + Gieo đồng thời hai con súc sắc cân đối. Tính xác suất sao cho: 1/ Hai con súc sắc đều xuất hiện mặt chẵn. 2/ Tổng số chấm xuất hiện trên hai con súc sắc bằng 7. + Cho hình chóp S.ABCD, đáy là hình hành ABCD có tâm O. Gọi M là trung điểm của SC. 1/ Xác định giao tuyến của mp(SAC) và mp(SBD), mp(SAB) và mp(SCD). 2/ Gọi N là trung điểm của OB, hãy xác định giao điểm I của mp(AMN) với SD. Xác định thiết diện khi cắt hình chóp S.ABCD bởi mặt phẳng (AMN). + Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm sáu chữ số khác nhau từng đôi một và trong mỗi số đó tổng của ba chữ số đầu nhỏ hơn tổng của ba chữ số cuối một đơn vị.