Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập viết phương trình đường thẳng trong không gian - Nguyễn Thị Thu

Tài liệu gồm 19 trang hướng dẫn giải các dạng toán viết phương trình đường thẳng trong không gian. Trong chương trình Hình học 12, bài toán viết phương trình đường thẳng trong không gian là bài toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong các đề thi tốt nghiệp THPT và thi vào Cao đẳng, Đại học nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết. Trong quá trình giảng dạy, tôi nhận thấy các em còn lúng túng nhiều trong quá trình giải các bài toán về viết phương trình đường thẳng. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề : “Phân loại các dạng bài tập viết về phương trình đường thẳng trong không gian”. Trong chuyên đề, tôi đã đưa ra phân loại bài tập viết phương trình đường thẳng từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Ngoài ra, giúp cho các em làm tốt các bài thi tốt nghiệp cũng như thi vào các trường Cao đẳng và Đại học. Chuyên đề gồm 3 phần: + Phần I: Phương pháp chung để giải toán + Phần II: Một số dạng toán thường gặp + Phần III: Bài tập tự luận tự luyện + Phần IV: Bài tập trắc nghiệm tự luyện [ads] Các dạng toán viết phương trình đường thẳng trong không gian: + Dạng 1: Viết phương trình tham số và phương trình chính tắc của đường thẳng d biết d đi qua điểm M (x0; y0; z0) và có vectơ chỉ phương u = (a; b; c). + Dạng 2: Viết phương trình tham số của đường thẳng d biết d đi qua hai điểm A, B cho trước. + Dạng 3: Viết phương trình đường thẳng d đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4: Viết phương trình đường thẳng d đi qua điểm M và song song với đường thẳng d’. + Dạng 5: Đường thẳng d đi qua điểm M và song song với 2 mặt phẳng cắt nhau (P) và (Q). + Dạng 6: Viết phương trình đường thẳng d đi qua điểm M, song song với mặt phẳng (P) và vuông góc với đường thẳng d’ (d’ không vuông góc với (P)). + Dạng 7 : Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng d1 và d2 (d1 và d2 là hai đường thẳng chéo nhau). + Dạng 8: Viết phương trình đường thẳng d đi qua điểm M đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 9: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2. + Dạng 10: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1. + Dạng 11: Viết phương trình đường thẳng d nằm trong mp(P) đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 12: Viết phương trình đường thẳng d song song với d’ đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 13: Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song d1 và d2 đồng thời d nằm trong mặt phẳng chứa d1 và d2. + Dạng 14: Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng d1 và d2 chéo nhau. + Dạng 15 : Viết phương trình tham số của đường thẳng d là hình chiếu của d’ trên mặt phẳng (P).

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC cực trị số phức
Tài liệu gồm 15 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) cực trị số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC cực trị số phức: A. LÍ THUYẾT TRỌNG TÂM 1. Các bất đẳng thức thường dùng. 2. Một số kết quả đã biết. B. CÁC DẠNG BÀI TẬP Dạng 1 : Phương pháp hình học. 1. Phương pháp giải. + Bước 1: Chuyển đổi ngôn ngữ bài toán số phức sang ngôn ngữ hình học. + Bước 2: Sử dụng một số kết quả đã biết để giải bài toán hình học. + Bước 3: Kết luận cho bài toán số phức. 2. Bài tập mẫu. Dạng 2 : Phương pháp đại số. 1. Phương pháp giải. 2. Bất đẳng thức Cauchy – Schwarz. 3. Bài tập mẫu.
Các dạng bài tập VDC phương trình bậc hai trên tập số phức
Tài liệu gồm 10 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình bậc hai trên tập số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương trình bậc hai trên tập số phức: A. LÍ THUYẾT 1. Căn bậc hai của một phức. 2. Giải phương trình bậc hai với hệ số thực. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2: Định lí Vi-ét và ứng dụng. Dạng 3: Phương trình quy về phương trình bậc hai.
Các dạng bài tập VDC khái niệm số phức và các phép toán của số phức
Tài liệu gồm 32 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) khái niệm số phức và các phép toán của số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC khái niệm số phức và các phép toán của số phức: A. LÝ THUYẾT 1. Khái niệm về số phức. 2. Các phép toán số phức. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Thực hiện các phép toán của số phức, tìm phần thực phần ảo. Dạng 2. Tìm số phức liên hợp, tính môđun số phức. Dạng 3. Bài toán liên quan đến điểm biểu diễn số phức. Dạng 4. Tìm số phức thỏa mãn điều kiện cho trước. Dạng 5: Bài toán tập hợp điểm biểu diễn số phức.
Lý thuyết và bài tập trắc nghiệm số phức - Phùng Hoàng Em
Tài liệu gồm 30 trang tóm tắt lý thuyết số phức và tuyển chọn các bài tập trắc nghiệm số phức có đáp án giúp học sinh học tốt chương trình Giải tích 12 chương 4 và ôn tập thi THPT Quốc gia môn Toán, tài liệu được biên soạn bởi thầy Phùng Hoàng Em. BÀI 1 . NHẬP MÔN SỐ PHỨC Vấn đề 1 . Xác định các đại lượng liên quan đến số phức. 1. Biến đổi số phức z về dạng A + Bi. 2. Khi đó: phần thực là A, phần ảo là B, số phức liên hợp là A + Bi = A − Bi, mô-đun bằng √(A^2 +B^2). Vấn đề 2 . Số phức bằng nhau. a + bi = c + di ⇔ a = c và b = d. a + bi = 0 ⇔ a = 0 và b = 0. Vấn đề 3 . Điểm biểu diễn số phức. Mỗi số phức z = a + bi được biểu diễn bởi duy nhất một điểm M(a,b) trên mặt phẳng tọa độ. Vấn đề 4 . Lũy thừa với đơn vị ảo. Các công thức biến đổi: i2 = −1, i3 = −i, in = 1 nếu n chia hết cho 4, in = i nếu n chia 4 dư 1, in = −1 nếu n chia 4 dư 2, in = −i nếu n chia 4 dư 3. Tổng n số hạng đầu của một cấp số cộng: Sn = n/2(u1 + un) hoặc Sn = n/2(2u1 + (n − 1)d), với u1 là số hạng đầu, d là công sai. Tổng n số hạng đầu của một cấp số nhân: Sn = u1.(1 − qn)/(1 − q), với u1 là số hạng đầu, q là công bội (q khác 1). [ads] BÀI 2 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH Vấn đề 1 . Phương trình với hệ số phức. Trong chương trình, ta chỉ xét phương trình dạng này với ẩn z bậc nhất. + Ta giải tương tự như giải phương trình bậc nhất trên tập số thực. + Thực hiện các biến đổi đưa về dạng z = A + Bi. Vấn đề 2 . Phương trình bậc hai với hệ số thực và một số phương trình quy về bậc hai. Xét phương trình ax2 + bx + c = 0, với a, b, c ∈ R và a khác 0. Đặt ∆ = b2 − 4ac, khi đó: 1. Nếu ∆ ≥ 0 thì phương trình có nghiệm x = (−b ±√∆)/2a. 2. Nếu ∆ < 0 thì phương trình có nghiệm x = (−b ± i√|∆|)/2a. 3. Định lý Viet: x1 + x2 = −b/a và x1.x2 = c/a. Vấn đề 3 . Xác định số phức bằng cách giải hệ phương trình. Gọi z = a + bi, với a, b ∈ R. + Nếu đề bài cho dạng hai số phức bằng nhau, ta áp dụng một trong hai công thức sau: a + bi = c + di ⇔ a = c hay b = d, a + bi = 0 ⇔ a = 0 hay b = 0. + Nếu đề bài cho phương trình ẩn z và kèm theo một trong các ẩn z, |z| … Ta thay z = a + bi vào điều kiện đề cho, đưa về “hai số phức bằng nhau”. + Nếu đề cho z thỏa hai điều kiện riêng biệt thì từ 2 điều kiện đó, ta tìm được hệ phương trình liên quan đến a, b. Giải tìm a, b. BÀI 3 . BIỄU DIỄN HÌNH HỌC CỦA SỐ PHỨC Vấn đề . Biễu diễn hình học của số phức. Trong mặt phẳng toạ độ Oxy, giả sử: M(x;y) là điểm biểu diễn của z = x + yi (x, y ∈ R), N(x’;y’) là điểm biểu diễn của z’ = x’ + y’i (x’, y’ ∈ R), I(a;b) là điểm biểu diễn của z0 = a + bi cho trước (a, b ∈ R). Khi đó, ta có các kết quả sau: + |z| = √(x^2 + y^2) = OM (khoảng cách từ điểm M đến gốc toạ độ O). + |z – z’| = √(x’ – x)2(y’ – y)2 = MN (khoảng cách giữa M và N). + |z – z0| ≤ R ⇔ (x – a)^2 + (y – b)^2 ≤ R^2: hình tròn tâm I(a; b), bán kính R. + |z – z0| = R ⇔ (x – a)^2 + (y – b)^2 = R^2: đường tròn tâm I(a; b), bán kính R.