Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Thanh Hóa

Nội dung Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Thanh Hóa Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Thanh Hóa Sytu xin giới thiệu đến các bạn đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD&ĐT Thanh Hóa. Đề thi được biên soạn theo dạng đề tự luận với 5 bài toán, đề thi gồm 01 trang và học sinh có thời gian làm bài trong 120 phút (2 tiếng đồng hồ). Đề thi cũng có lời giải chi tiết để học sinh có thể tự kiểm tra và ôn tập sau khi làm bài. Trích dẫn một số câu hỏi trong đề Toán: + Từ một điểm A nằm ngoài đường tròn tâm O bán kính R, kẻ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M bất kỳ khác B và C. Gọi I, K, P lần lượt là hình chiếu vuông góc của điểm M trên các đường thẳng AB, AC, BC. Hãy chứng minh rằng tứ giác AIMK là tứ giác nội tiếp. + Cho đường thẳng (d) có phương trình y = ax + b. Tìm a, b để đường thẳng (d) song song với đường thẳng y = 5x + 6 và đi qua điểm A(2;3). + Phương trình x^2 - 2(m - 1)x + 2m - 5 = 0 (m là tham số). Hãy chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi m. Đây là một số câu hỏi trong đề thi Toán năm 2019 - 2020 của sở GD&ĐT Thanh Hóa. Hy vọng rằng các em sẽ thực sự thử thách và ôn tập kiến thức một cách hiệu quả khi giải các bài toán này.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Ninh Bình
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Ninh Bình gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Cho đường tròn (T) tâm O và dây cung AB cố định (O /∈ AB). P là điểm di dộng trên đoạn thẳng AB (P khác A, B và P khác trung điểm của đoạn thẳng AB). Đường tròn (T1) tâm C đi qua điểm P tiếp xúc với đường tròn (T) tại A. Đường tròn (T2) tâm D đi qua P tiếp xúc với đường tròn (T) tại B. Hai đường tròn (T1) và (T2) cắt nhau tại N (N khác P). Gọi (d1) là tiếp tuyến chung của (T) với (T1) tại A, (d2) là tiếp tuyến của (T) với (T2) tại B, (d1) cắt (d2) tại điểm Q. 1. Chứng minh tứ giác AOBQ nội tiếp đường tròn. 2. Chứng minh ANP = BNP và bốn điểm O, D, C, N cùng nằm trên một đường tròn. 3. Chứng minh rằng đường trung trực của đoạn ON luôn đi qua một cố định khi P di động trên đoạn thẳng AB (P khác A, B và P khác trung điểm của đoạn thẳng AB). + Tìm tất cả các số nguyên n sao cho n2 + 2022 là số chính phương. + Cho phương trình x2 − 2mx + 2m − 1 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 (x1 < x2) thỏa mãn 4×1 = x22.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Tiền Giang
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tiền Giang : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x2 và đường thẳng (d) : y = 2mx + 1, m là tham số. Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A , B sao cho OI = √10, với I là trung điểm của đoạn thẳng AB. + Cho phương trình bậc hai (x − a)(x − b) + (x − b)(x − c) + (x − c)(x − a) = 0 có nghiệm kép, trong đó x là ẩn số và a, b, c là các tham số. Chứng minh rằng a = b = c. + Cho x, y là các số thực thay đổi thỏa mãn điều kiện x2 + y2 + xy = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = x2 + y2 − xy.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Đồng Nai
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai : + Trong mặt phẳng cho 1889 điểm thỏa mãn với 3 điểm bất kỳ tạo thành 3 đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh trong các điểm đã cho tồn tại 237 điểm cùng nằm bên trong hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1/2. + Có bao nhiêu cách bỏ 5 cây bút khác màu gồm xanh, đen, tím, đỏ, hồng vào 5 hộp đựng bút khác màu gồm xanh, đen, tím, đỏ, hồng sao cho mỗi hộp chỉ có một bút và màu bút khác với màu hộp? + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có hai đường cao BE, CF cắt nhau tại trực tâm H, biết AB < AC. Gọi L là giao điểm của đường thẳng BC với tiếp tuyến tại A của (O). Gọi K là giao điểm của hai đường thẳng BC và EF. Gọi M, N lần lượt là trung điểm của hai đoạn thẳng BC, EF. 1. Chứng minh tứ giác ALMO nội tiếp đường tròn. Gọi D là giao điểm của (O) với đường tròn ngoại tiếp tứ giác ALMO , D khác A . Chứng minh LD là tiếp tuyến của (O). 2. Chứng minh MH vuông góc với AK, suy ra KH vuông góc với AM. 3. Chứng minh rằng ba điểm A, N, D thẳng hàng.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Cao Bằng
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Cao Bằng gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Cao Bằng : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x2 và đường thẳng (d) : y = 2 (m − 1) x − m2 + 3. Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho: y1 + y2 − x1x2 − 33 = 0. + Tìm tất cả các số dương x để biểu thức Q = 3x/(x2 − x + 1) nhận giá trị là những số nguyên. + Tìm tất cả các số tự nhiên a có bốn chữ số thỏa mãn. Khi chia a cho 80 ta được số dư là 20 và khi chia a cho 41 ta được số dư là 11.