Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 9 tập 1 - Trần Công Dũng

Tài liệu gồm 59 trang, được biên soạn bởi thầy giáo Trần Công Dũng, bao gồm tóm tắt lý thuyết, phương pháp giải toán và bài tập luyện tập môn Toán 9 tập 1, theo định hướng đề thi của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. MỤC LỤC : Chương 1 Căn bậc hai, căn bậc ba 3. A Căn bậc hai 3. I Tóm tắt lý thuyết 3. II Phương pháp giải toán 3. B Căn thức bậc hai và hằng đẳng thức √A2 = |A| 5. I Tóm tắt lí thuyết 5. II Phương pháp giải toán 5. + Dạng 1. Điều kiện để √A có nghĩa 5. + Dạng 2. Sử dụng hằng đẳng thức √A2 = |A| 5. + Dạng 3. Giải phương trình 6. III Bài tập tự luyện và nâng cao 6. C Liên hệ giữa phép nhân, phép chia và phép khai phương 8. I Tóm tắt lí thuyết 8. II Các dạng toán 8. III Bài tập tự luyện và nâng cao 9. D Biến đổi đơn giản và rút gọn biểu thức chứa căn bậc hai 10. I Tóm tắt lí thuyết 10. II Các dạng toán 10. + Dạng 1. Đưa thừa số ra ngoài dấu căn, đưa thừa số vào bên trong dấu căn 10. + Dạng 2. Khử mẫu của biểu thức dưới dấu căn – Phép nhân liên hợp 11. III Bài tập rèn luyện 12. E Bài tập ôn chương 1 15. + Dạng 1. Rút gọn biểu thức số 15. + Dạng 2. Giải phương trình chứa căn thức đơn giản 16. + Dạng 3. Rút gọn biểu thức chứa căn thức 17. Chương 2 HÀM SỐ BẬC NHẤT 21. A Nhắc lại và bổ sung khái niệm về hàm số 21. I Tóm tắt lí thuyết 21. II Các dạng toán 21. + Dạng 1. Tìm giá trị của hàm số, biến số 21. + Dạng 2. Toán thực tế về hàm số 22. B Hàm số bậc nhất 24. I Tóm tắt lý thuyết 24. II Phương pháp giải toán 24. III Bài tập luyện tập 25. C Tương giao hai đường thẳng 27. I Tóm tắt lí thuyết 27. II Phương pháp giải toán 27. III Bài tập luyện tập 28. D Hệ số góc của đường thẳng 29. I Tóm tắt lí thuyết 29. II Phương pháp giải toán 29. + Dạng 1. Hệ số góc của đường thẳng 30. + Dạng 2. Lập phương trình đường thẳng biết hệ số góc 30. III Bài tập tự luyện 31. E Bài tập ôn chương 2 31. Chương 1 HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG 37. A Một số hệ thức về cạnh và đường cao của tam giác vuông 37. I Tóm tắt lí thuyết 37. II Phương pháp giải toán 37. + Dạng 1. Giải các bài toán định lượng 38. + Dạng 2. Giải các bài toán định tính 38. III Bài tập tự luyện 39. B Tỉ số lượng giác 41. I Tóm tắt lí thuyết 41. II Phương pháp giải toán 41. III Bài tập tự luyện 41. C Ứng dụng thực tế hệ thức lượng trong tam giác vuông 43. Chương 2 ĐƯỜNG TRÒN 49. A Sự xác định đường tròn 49. I Tóm tắt lí thuyết 49. B Đường kính và dây của đường tròn 50. C Liên hệ giữa dây và khoảng cách từ tâm đến dây 50. I Bài tập rèn luyện 50. D Vị trí tương đối giữa đường thẳng và đường tròn – Dấu hiệu nhận biết đường tròn 52. I Tóm tắt lí thuyết 52.

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề công thức nghiệm của phương trình bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề công thức nghiệm của phương trình bậc hai Bản PDF Tài liệu lớp 9 môn Toán với chủ đề công thức nghiệm của phương trình bậc hai cung cấp kiến thức cần nhớ, các dạng toán và bài tập chi tiết để học sinh hiểu rõ về phương trình bậc hai.I. Kiến thức cần nhớ:1. Phương trình bậc hai một ẩn:- Phương trình bậc hai một ẩn là phương trình có dạng \(ax^2 + bx + c = 0\).- Để giải phương trình bậc hai một ẩn, ta cần tìm tập nghiệm của phương trình đó.2. Công thức nghiệm của phương trình bậc hai:- Xét phương trình bậc hai \(ax^2 + bx + c = 0\) và biệt thức \(\Delta = b^2 - 4ac\).- Nếu \(\Delta < 0\), phương trình vô nghiệm.- Nếu \(\Delta = 0\), phương trình có nghiệm kép.- Nếu \(\Delta > 0\), phương trình có hai nghiệm phân biệt.3. Công thức nghiệm thu gọn của phương trình bậc hai:- Xét phương trình bậc hai \(ax^2 + bx + c = 0\) với \(b = \frac{b}{2}\).- Trong trường hợp \(\Delta < 0\), phương trình vô nghiệm.- Trong trường hợp \(\Delta = 0\), phương trình có nghiệm kép: \(x = \frac{-b}{2a}\).- Trong trường hợp \(\Delta > 0\), phương trình có hai nghiệm phân biệt: \(x = \frac{-b \pm \sqrt{\Delta}}{2a}\).II. Bài tập và các dạng toán:- Tài liệu cung cấp các dạng toán như: giải phương trình bậc hai một ẩn, sử dụng công thức nghiệm, xác định số nghiệm của phương trình, chứng minh phương trình có nghiệm, vô nghiệm.- Học sinh có thể tự ôn tập và làm bài tập về nhà để nắm vững kiến thức.Tài liệu lớp 9 môn Toán với chủ đề công thức nghiệm của phương trình bậc hai là nguồn tư liệu hữu ích giúp học sinh hiểu rõ về phương trình bậc hai và rèn luyện kỹ năng giải các dạng toán liên quan.
Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụng
Nội dung Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụng Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụngNội dung tài liệu: Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụng Tài liệu này bao gồm 36 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề hệ thức Vi-ét và ứng dụng trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết cho các bài tập. Nội dung tài liệu: A. Lý thuyết: 1. Hệ thức Vi-ét 2. Ứng dụng của hệ thức Vi-ét B. Bài tập: Tài liệu cung cấp các dạng bài tập sau: - Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. - Dạng 2: Giải phương trình bằng phương pháp nhẩm nghiệm. - Dạng 3: Tìm hai số khi biết tổng và tích. - Dạng 4: Xét dấu các nghiệm của phương trình bậc hai. - Dạng 5: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. - Dạng 6: Tìm GTLN – GTNN của biểu thức. - Dạng 7: Tìm hệ thức giữa hai nghiệm của phương trình không phụ thuộc vào tham số. Bài tập về nhà: Tài liệu cung cấp file WORD (dành cho giáo viên) để học sinh có thể tự luyện tập thêm sau giờ học. Tóm lại, tài liệu lớp 9 môn Toán với chủ đề hệ thức Vi-ét và ứng dụng cung cấp kiến thức cần thiết, các dạng bài tập đa dạng và đáp án chi tiết, giúp học sinh nắm vững và rèn luyện kỹ năng giải bài tập hiệu quả.
Tài liệu lớp 9 môn Toán chủ đề phương trình quy về phương trình bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề phương trình quy về phương trình bậc hai Bản PDF Tài liệu lớp 9 môn Toán chủ đề phương trình bậc hai là tài liệu đầy đủ và chi tiết để học sinh tự học và ôn tập kiến thức về phương trình quy về phương trình bậc hai. Tài liệu gồm 27 trang, bao gồm các phần sau:A. Lý thuyết:1. Phương trình trùng phương: Đây là loại phương trình có dạng ax^2 + bx + c = 0. Để giải phương trình này, ta có thể đặt ẩn phụ t = x để đưa phương trình về dạng ax^2 + bx + c = 0.2. Phương trình chứa ẩn ở mẫu thức: Để giải phương trình này, ta cần tìm điều kiện xác định của ẩn và quy đồng mẫu thức hai vế rồi khử mẫu.3. Phương trình đưa về dạng tích: Để giải phương trình này, ta phân tích vế trái thành nhân tử và xét từng nhân tử bằng 0 để tìm nghiệm.B. Bài tập và các dạng toán:I. Phương trình không chứa tham số: Bao gồm nhiều dạng toán như giải phương trình trùng phương, phương trình chứa căn thức, và một số dạng khác.II. Phương trình chứa tham số: Bao gồm các dạng toán như phương trình bậc ba đưa được về dạng tích và phương trình trùng phương.Ngoài ra, tài liệu cũng cung cấp bài tập về nhà để học sinh ôn tập và làm thêm. Tài liệu được viết dễ hiểu, chi tiết và có đáp án cụ thể để học sinh tự kiểm tra và tự đánh giá. Đây là tài liệu hữu ích giúp học sinh nắm vững kiến thức về phương trình bậc hai và rèn luyện kỹ năng giải toán hiệu quả.
Tài liệu lớp 9 môn Toán chủ đề bài toán về đường thẳng và parabol
Nội dung Tài liệu lớp 9 môn Toán chủ đề bài toán về đường thẳng và parabol Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề đường thẳng và parabol Tài liệu học Toán lớp 9 chủ đề đường thẳng và parabol Tài liệu này bao gồm 08 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến đường thẳng và parabol trong chương trình Toán lớp 9. Mọi bài tập đều có đáp án và lời giải chi tiết. Bài toán về đường thẳng và parabol thường đưa ra phương trình của đường thẳng d (dạng y = mx + n) và parabol P (dạng y = ax^2 + bx + c) và yêu cầu tìm số giao điểm giữa chúng. Để giải bài toán này, ta có thể sử dụng phương pháp so sánh biệt thức ∆ của phương trình hoành độ giao điểm của d và P. Qua bảng thống kê số giao điểm và biệt thức ∆, ta có thể dễ dàng xác định vị trí tương đối của đường thẳng và parabol: không cắt, tiếp xúc hoặc cắt tại hai điểm phân biệt. Tài liệu cung cấp một loạt bài tập giúp học sinh ôn tập và nắm vững kiến thức về đường thẳng và parabol. File WORD dành cho giáo viên giúp dễ dàng sử dụng và chỉnh sửa theo nhu cầu.