Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh Toán 11 THPT năm 2018 - 2019 sở GDĐT Thanh Hóa

Thứ Năm ngày 21 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 hệ THPT năm học 2018 – 2019. Đề thi học sinh giỏi cấp tỉnh Toán 11 THPT năm 2018 – 2019 sở GD&ĐT Thanh Hóa được biên soạn theo hình thức tự luận với 05 bài toán, thí sinh có 180 phút để hoàn thành bài thi, không kể thời gian giám thị coi thi phát đề, lời giải chi tiết của đề được biên soạn bởi thầy Nguyễn Xuân Chung, giáo viên Toán trường THPT Lê Lai – Ngọc Lặc – Thanh Hóa. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 THPT năm 2018 – 2019 sở GD&ĐT Thanh Hóa : + Có bao nhiêu số tự nhiên có 8 chữ số khác nhau mà có mặt hai chữ lẻ và ba chữ số chẵn, trong đó mỗi chữ số chẵn có mặt đúng hai lần?. [ads] + Trong hệ tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn (C) tâm I, trọng tâm G(8/3;0), các điểm M(0;1), N(4;1) lần lượt đối xứng với I qua AB và AC, điểm K(2;-1) thuộc đường thẳng BC. Viết phương trình đường tròn (C). + Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Một mặt phẳng không qua S cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q thỏa mãn các hệ thức vectơ: SA = 2SM, SC = 3SP. Tính tỉ số SB/SN khi biểu thức T = (SB/SN)^2 + 4(SD/SQ)^2 đạt giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường THPT Lương Ngọc Quyến - Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Cho tập hợp S = {1; 2; 3; …; 39; 40} gồm 40 số tự nhiên từ 1 đến 40. Lấy ngẫu nhiên ba số thuộc tập S. Tính xác suất để ba số lấy được lập thành cấp số cộng. + Cho tứ diện ABCD 1) Gọi EFG lần lượt là trọng tâm của tam giác ABC ACD ABD. a) Chứng minh (EFG BCD). b) Tính diện tích tam giác EFG theo diện tích tam giác BCD. + Gọi M là điểm thuộc miền trong của tam giác BCD. Kẻ qua M đường thẳng d AB. a) Xác định giao điểm B’ của đường thẳng d và mặt phẳng (ACD). b) Kẻ qua M các đường thẳng lần lượt song song với AC và AD cắt các mặt phẳng (ABD) và (ABC) theo thứ tự tại C D. Chứng minh rằng MB MC MD AB AC AD.
Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường THPT Yên Phong 2 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT Yên Phong số 2, tỉnh Bắc Ninh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường THPT Yên Phong 2 – Bắc Ninh : + Cho dãy số (un) có số hạng tổng quát un = −3n + 1, ∀n ∈ N∗. a) Chứng minh rằng (un) là một cấp số cộng. b) Với mỗi số nguyên dương n ta đặt vn = 2024un. Chứng minh rằng dãy số (vn) là một cấp số nhân lùi vô hạn và tính tổng của cấp số nhân lùi vô hạn đó. + Trong mặt phẳng tọa độ Oxy cho parabol (P) : y = x2 − 2x và đường tròn (T) : x2 + y2 − 4x − 2y = 0. Tính diện tích của đa giác lồi có các đỉnh là các điểm chung của (P) và (T). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SC, G là trọng tâm tam giác ABC, K là giao điểm của đường thẳng SD và mặt phẳng (AGM). a) Chứng minh đường thẳng OM song song với mặt phẳng (SAD). b) Mặt phẳng (P) chứa đường thẳng MG và song song với đường thẳng SB. Hãy xác định giao điểm Q của đường thẳng BC với mặt phẳng (P). c) Tính tỉ số KS KD.
Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường THPT Ngô Gia Tự - Phú Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT Ngô Gia Tự, tỉnh Phú Yên; đề thi có đáp án và thang điểm. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường THPT Ngô Gia Tự – Phú Yên : + Cho tam giác ABC có BC a CA b AB c và có diện tích là S. Kí hiệu m m m abc lần lượt là độ dài của các đường trung tuyến kẻ từ các đỉnh A, B, C. Biết rằng 2 2 m m a b c. Chứng minh 2 a S A 4. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ các đỉnh A, B, C lần lượt có phương trình là x y 2 0 3 0. Tìm tọa độ các đỉnh A, B, C biết độ dài đường cao đỉnh A của tam giác ABC bằng 12 5 và đỉnh A có hoành độ âm. + Cho hình bình hành ABCD tâm O và AC AB 2. Gọi BE là trung tuyến của tam giác ABO và M là trung điểm của BC. Chứng minh EM vuông góc với BD.
Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường chuyên Lê Hồng Phong - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; đề thi gồm 40 câu trắc nghiệm và 06 câu tự luận, thời gian làm bài 60 + 75 phút, có đáp án và hướng dẫn chấm điểm mã đề 498 499 500 501. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường chuyên Lê Hồng Phong – Nam Định : + Một rạp hát có 20 hàng ghế xếp theo hình quạt. Hàng thứ nhất có 17 ghế, hàng thứ 2 có 20 ghế, hàng thứ ba có 23 ghế, … cứ tiếp tục cho đến hàng cuối cùng (hình vẽ). Trong một buổi biểu diễn ca nhạc, rạp hát đó đã bán được vừa hết số vé tương ứng với số ghế trong rạp hát. Tính số tiền thu được từ việc bán vé, biết rằng mỗi vé xem có giá 200000 đồng? + Đường Vôn Kốc là một hình có tính chất toàn bộ hình “đồng dạng” với từng bộ phận của nó. Nó được xây dựng bằng phương pháp lặp như sau: Từ đoạn thẳng AB ban đầu, ta chia đoạn thẳng đó thành 3 phần bằng nhau AC CD DB, dựng tam giác đều CED rồi bỏ đi khoảng CD. Ta được đường gấp khúc ACEDB kí hiệu là K1. Lặp lại quy tắc đó cho các đoạn AC, CE, ED, DB ta được đường gấp khúc K2 (hình vẽ). Tiếp tục lặp lại quy tắc đó cho từng đoạn của K2 ta được đường gấp khúc K3 …. Lặp lại mãi quá trình đó ta được một đường gọi là đường Vôn Kốc. Giả sử đoạn thẳng ban đầu có độ dài a, tính độ dài đường gấp khúc K6. + Cho một đa giác lồi có 60 đỉnh. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một tứ giác có bốn cạnh là bốn đường chéo của của đa giác đó?